Tensorflow的常用矩阵生成方式
技术  /  管理员 发布于 7年前   173
我就废话不多说了,直接上代码吧!
#全0和全1矩阵v1 = tf.Variable(tf.zeros([3,3,3]), name="v1") v2 = tf.Variable(tf.ones([10,5]), name="v2") #填充单值矩阵 v3 = tf.Variable(tf.fill([2,3], 9)) #常量矩阵 v4_1 = tf.constant([1, 2, 3, 4, 5, 6, 7]) v4_2 = tf.constant(-1.0, shape=[2, 3]) # 和v4_1形状一样的全1或全0矩阵v5_1=tf.ones_like(v4_1)v5_2=tf.zeros_like(v4_1) #生成等差数列 v6_1 = tf.linspace(10.0, 12.0, 30, name="linspace")#float32 or float64 v7_1 = tf.range(10, 20, 3)#just int32 #生成各种随机数据矩阵 #平均分布v8_1 = tf.Variable(tf.random_uniform([2,4], minval=0.0, maxval=2.0, dtype=tf.float32, seed=1234, name="v8_1")) #正态分布v8_2 = tf.Variable(tf.random_normal([2,3], mean=0.0, stddev=1.0, dtype=tf.float32, seed=1234, name="v8_2")) #正态分布,但是去掉2sigma外的数字v8_3 = tf.Variable(tf.truncated_normal([2,3], mean=0.0, stddev=1.0, dtype=tf.float32, seed=1234, name="v8_3")) #把这3个行重排列v8_5 = tf.random_shuffle([[1,2,3],[4,5,6],[6,6,6]], seed=134, name="v8_5")
以上都是计算图中的变量,需要sess.run()以后才能成为真正的数据
存取方式是:
np.save("v1.npy",sess.run(v1))#numpy save v1 as file test_a = np.load("v1.npy") print test_a[1,2]
这篇Tensorflow的常用矩阵生成方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
122 在
学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..123 在
Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..原梓番博客 在
在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..博主 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..1111 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
Copyright·© 2019 侯体宗版权所有·
粤ICP备20027696号