pandas.DataFrame删除/选取含有特定数值的行或列实例
技术 / 管理员 发布于 7年前 202
1.删除/选取某列含有特殊数值的行
import pandas as pdimport numpy as np a=np.array([[1,2,3],[4,5,6],[7,8,9]])df1=pd.DataFrame(a,index=['row0','row1','row2'],columns=list('ABC'))print(df1)df2=df1.copy() #删除/选取某列含有特定数值的行#df1=df1[df1['A'].isin([1])]#df1[df1['A'].isin([1])] 选取df1中A列包含数字1的行 df1=df1[~df1['A'].isin([1])]#通过~取反,选取不包含数字1的行print(df1)
运行结果:
2.删除/选取某行含有特殊数值的列
#删除/选取某行含有特定数值的列cols=[x for i,x in enumerate(df2.columns) if df2.iat[0,i]==3]#利用enumerate对row0进行遍历,将含有数字3的列放入cols中print(cols) #df2=df2[cols] 选取含有特定数值的列df2=df2.drop(cols,axis=1) #利用drop方法将含有特定数值的列删除print(df2)
运行结果:
3.删除含有空值的行或列
实现思路:利用pandas.DateFrame.fillna对空值赋予特定值,再利用上文介绍的方法找到这些含有特定值的行或列去除即可。
import pandas as pdimport numpy as np df1 = pd.DataFrame( [ [np.nan, 2, np.nan, 0], [3, 4, np.nan, 1], [np.nan, np.nan, np.nan, 5], [np.nan, 3, np.nan, 4] ],columns=list('ABCD'))print(df1)df2=df1.copy() df1['A']=df1['A'].fillna('null') #将df中A列所有空值赋值为'null'print(df1)df1=df1[~df1['A'].isin(['null'])]print(df1) #删除某行空值所在列 df2[0:1]=df2[0:1].fillna('null')print(df2)cols=[x for i,x in enumerate(df2.columns) if df2.iat[0,i]=='null']print(cols)df2=df2.drop(cols,axis=1)print(df2)
运行结果:
以上这篇pandas.DataFrame删除/选取含有特定数值的行或列实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
122 在
学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..123 在
Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..原梓番博客 在
在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..博主 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..1111 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
Copyright·© 2019 侯体宗版权所有·
粤ICP备20027696号