Pytorch之finetune使用详解
Python  /  管理员 发布于 5年前   949
finetune分为全局finetune和局部finetune。首先介绍一下局部finetune步骤:
1.固定参数
for name, child in model.named_children(): for param in child.parameters(): param.requires_grad = False
后,只传入 需要反传的参数,否则会报错
filter(lambda param: param.requires_grad, model.parameters())
2.调低学习率,加快衰减
finetune是在预训练模型上进行微调,学习速率不能太大。
目前不清楚:学习速率降低的幅度可以更快一些。这样以来,在使用step的策略时,stepsize可以更小一些。
直接从原始数据训练的base_lr一般为0.01,微调要比0.01小,置为0.001
要比直接训练的小一些,直接训练的stepsize为100000,finetune的stepsize: 50000
3. 固定bn或取消dropout:
batchnorm会影响训练的效果,随着每个batch,追踪样本的均值和方差。对于固定的网络,bn应该使用全局的数值
def freeze_bn(self): for layer in self.modules(): if isinstance(layer, nn.BatchNorm2d): layer.eval()
训练时,model.train()会修改模式,freeze_zn()应该在这里后面
4.过滤参数
训练时,对于优化器,应该只传入需要改变的参数,否则会报错
filter(lambda p: p.requires_grad, model.parameters())
以上这篇Pytorch之finetune使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
122 在
学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..123 在
Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..原梓番博客 在
在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..博主 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..1111 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
Copyright·© 2019 侯体宗版权所有·
粤ICP备20027696号