关于pytorch中全连接神经网络搭建两种模式详解
Python  /  管理员 发布于 5年前   307
pytorch搭建神经网络是很简单明了的,这里介绍两种自己常用的搭建模式:
import torchimport torch.nn as nn
first:
class NN(nn.Module): def __init__(self): super(NN,self).__init__() self.model=nn.Sequential( nn.Linear(30,40), nn.ReLU(), nn.Linear(40,60), nn.Tanh(), nn.Linear(60,10), nn.Softmax() ) self.model[0].weight.data.uniform_(-3e-3, 3e-3) self.model[0].bias.data.uniform(-1,1) def forward(self,states): return self.model(states)
这一种是将整个网络写在一个Sequential中,网络参数设置可以在网络搭建好后单独设置:self.model[0].weight.data.uniform_(-3e-3,3e-3),这是设置第一个linear的权重是(-3e-3,3e-3)之间的均匀分布,bias是-1至1之间的均匀分布。
second:
class NN1(nn.Module): def __init__(self): super(NN1,self).__init__() self.Linear1=nn.Linear(30,40) self.Linear1.weight.data.fill_(-0.1) #self.Linear1.weight.data.uniform_(-3e-3,3e-3) self.Linear1.bias.data.fill_(-0.1) self.layer1=nn.Sequential(self.Linear1,nn.ReLU()) self.Linear2=nn.Linear(40,60) self.layer2=nn.Sequential(self.Linear2,nn.Tanh()) self.Linear3=nn.Linear(60,10) self.layer3=nn.Sequential(self.Linear3,nn.Softmax()) def forward(self,states): return self.model(states)
网络参数的设置可以在定义完线性层之后直接设置如这里对于第一个线性层是这样设置:self.Linear1.weight.data.fill_(-0.1),self.Linear1.bias.data.fill_(-0.1)。
你可以看一下这样定义完的参数的效果:
Net=NN()print("0:",Net.model[0])print("weight:",type(Net.model[0].weight))print("weight:",type(Net.model[0].weight.data))print("bias",Net.model[0].bias.data)print('1:',Net.model[1])#print("weight:",Net.model[1].weight.data)print('2:',Net.model[2])print('3:',Net.model[3])#print(Net.model[-1])Net1=NN1()
print(Net1.Linear1.weight.data)
输出:
0: Linear (30 -> 40)weight: <class 'torch.nn.parameter.Parameter'>weight: <class 'torch.FloatTensor'>bias -0.6287-0.6573-0.0452 0.9594-0.7477 0.1363-0.1594-0.1586 0.0360 0.7375 0.2501-0.1371 0.8359-0.9684-0.3886 0.7200-0.3906 0.4911 0.8081-0.5449 0.9872 0.2004 0.0969-0.9712 0.0873 0.4562-0.4857-0.6013 0.1651 0.3315-0.7033-0.7440 0.6487 0.9802-0.5977 0.3245 0.7563 0.5596 0.2303-0.3836[torch.FloatTensor of size 40]1: ReLU ()2: Linear (40 -> 60)3: Tanh ()-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000 ... ⋱ ... -0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000[torch.FloatTensor of size 40x30]Process finished with exit code 0
这里要注意self.Linear1.weight的类型是网络的parameter。而self.Linear1.weight.data是FloatTensor。
以上这篇关于pytorch中全连接神经网络搭建两种模式详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
122 在
学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..123 在
Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..原梓番博客 在
在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..博主 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..1111 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
Copyright·© 2019 侯体宗版权所有·
粤ICP备20027696号