侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

pytorch-神经网络拟合曲线实例

Python  /  管理员 发布于 5年前   357

代码已经调通,跑出来的效果如下:

# coding=gbkimport torchimport matplotlib.pyplot as pltfrom torch.autograd import Variableimport torch.nn.functional as F ''' Pytorch是一个拥有强力GPU加速的张量和动态构建网络的库,其主要构建是张量,所以可以把PyTorch当做Numpy 来用,Pytorch的很多操作好比Numpy都是类似的,但是其能够在GPU上运行,所以有着比Numpy快很多倍的速度。 训练完了,发现隐层越大,拟合的速度越是快,拟合的效果越是好''' def train(): print('------  构建数据集  ------') # torch.linspace是为了生成连续间断的数据,第一个参数表示起点,第二个参数表示终点,第三个参数表示将这个区间分成平均几份,即生成几个数据 x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) #torch.rand返回的是[0,1]之间的均匀分布 这里是使用一个计算式子来构造出一个关联结果,当然后期要学的也就是这个式子 y = x.pow(2) + 0.2 * torch.rand(x.size()) # Variable是将tensor封装了下,用于自动求导使用 x, y = Variable(x), Variable(y) #绘图展示 plt.scatter(x.data.numpy(), y.data.numpy()) #plt.show()  print('------  搭建网络  ------') #使用固定的方式继承并重写 init和forword两个类 class Net(torch.nn.Module):  def __init__(self,n_feature,n_hidden,n_output):   #初始网络的内部结构   super(Net,self).__init__()   self.hidden=torch.nn.Linear(n_feature,n_hidden)   self.predict=torch.nn.Linear(n_hidden,n_output)  def forward(self, x):   #一次正向行走过程   x=F.relu(self.hidden(x))   x=self.predict(x)   return x net=Net(n_feature=1,n_hidden=1000,n_output=1) print('网络结构为:',net)  print('------  启动训练  ------') loss_func=F.mse_loss optimizer=torch.optim.SGD(net.parameters(),lr=0.001)  #使用数据 进行正向训练,并对Variable变量进行反向梯度传播 启动100次训练 for t in range(10000):  #使用全量数据 进行正向行走  prediction=net(x)  loss=loss_func(prediction,y)  optimizer.zero_grad() #清除上一梯度  loss.backward() #反向传播计算梯度  optimizer.step() #应用梯度   #间隔一段,对训练过程进行可视化展示  if t%5==0:   plt.cla()   plt.scatter(x.data.numpy(),y.data.numpy()) #绘制真是曲线   plt.plot(x.data.numpy(),prediction.data.numpy(),'r-',lw=5)   plt.text(0.5,0,'Loss='+str(loss.data[0]),fontdict={'size':20,'color':'red'})   plt.pause(0.1) plt.ioff() plt.show() print('------  预测和可视化  ------') if __name__=='__main__': train()

以上这篇pytorch-神经网络拟合曲线实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


  • 上一条:
    pytorch实现线性拟合方式
    下一条:
    Pytorch中的VGG实现修改最后一层FC
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客