侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

pytorch 图像中的数据预处理和批标准化实例

Python  /  管理员 发布于 5年前   352

目前数据预处理最常见的方法就是中心化和标准化。

中心化相当于修正数据的中心位置,实现方法非常简单,就是在每个特征维度上减去对应的均值,最后得到 0 均值的特征。

标准化也非常简单,在数据变成 0 均值之后,为了使得不同的特征维度有着相同的规模,可以除以标准差近似为一个标准正态分布,也可以依据最大值和最小值将其转化为 -1 ~ 1 之间

批标准化:BN

在数据预处理的时候,我们尽量输入特征不相关且满足一个标准的正态分布,这样模型的表现一般也较好。但是对于很深的网路结构,网路的非线性层会使得输出的结果变得相关,且不再满足一个标准的 N(0, 1) 的分布,甚至输出的中心已经发生了偏移,这对于模型的训练,特别是深层的模型训练非常的困难。

所以在 2015 年一篇论文提出了这个方法,批标准化,简而言之,就是对于每一层网络的输出,对其做一个归一化,使其服从标准的正态分布,这样后一层网络的输入也是一个标准的正态分布,所以能够比较好的进行训练,加快收敛速度。

batch normalization 的实现非常简单,接下来写一下对应的python代码:

import syssys.path.append('..') import torch def simple_batch_norm_1d(x, gamma, beta):  eps = 1e-5  x_mean = torch.mean(x, dim=0, keepdim=True) # 保留维度进行 broadcast  x_var = torch.mean((x - x_mean) ** 2, dim=0, keepdim=True)  x_hat = (x - x_mean) / torch.sqrt(x_var + eps)  return gamma.view_as(x_mean) * x_hat + beta.view_as(x_mean)   x = torch.arange(15).view(5, 3)gamma = torch.ones(x.shape[1])beta = torch.zeros(x.shape[1])print('before bn: ')print(x)y = simple_batch_norm_1d(x, gamma, beta)print('after bn: ')print(y)

测试的时候该使用批标准化吗?

答案是肯定的,因为训练的时候使用了,而测试的时候不使用肯定会导致结果出现偏差,但是测试的时候如果只有一个数据集,那么均值不就是这个值,方差为 0 吗?这显然是随机的,所以测试的时候不能用测试的数据集去算均值和方差,而是用训练的时候算出的移动平均均值和方差去代替

下面我们实现以下能够区分训练状态和测试状态的批标准化方法

def batch_norm_1d(x, gamma, beta, is_training, moving_mean, moving_var, moving_momentum=0.1):  eps = 1e-5  x_mean = torch.mean(x, dim=0, keepdim=True) # 保留维度进行 broadcast  x_var = torch.mean((x - x_mean) ** 2, dim=0, keepdim=True)  if is_training:    x_hat = (x - x_mean) / torch.sqrt(x_var + eps)    moving_mean[:] = moving_momentum * moving_mean + (1. - moving_momentum) * x_mean    moving_var[:] = moving_momentum * moving_var + (1. - moving_momentum) * x_var  else:    x_hat = (x - moving_mean) / torch.sqrt(moving_var + eps)  return gamma.view_as(x_mean) * x_hat + beta.view_as(x_mean)

下面我们在卷积网络下试用一下批标准化看看效果

def data_tf(x):  x = np.array(x, dtype='float32') / 255  x = (x - 0.5) / 0.5 # 数据预处理,标准化  x = torch.from_numpy(x)  x = x.unsqueeze(0)  return x train_set = mnist.MNIST('./data', train=True, transform=data_tf, download=True) # 重新载入数据集,申明定义的数据变换test_set = mnist.MNIST('./data', train=False, transform=data_tf, download=True)train_data = DataLoader(train_set, batch_size=64, shuffle=True)test_data = DataLoader(test_set, batch_size=128, shuffle=False)# 使用批标准化class conv_bn_net(nn.Module):  def __init__(self):    super(conv_bn_net, self).__init__()    self.stage1 = nn.Sequential(      nn.Conv2d(1, 6, 3, padding=1),      nn.BatchNorm2d(6),      nn.ReLU(True),      nn.MaxPool2d(2, 2),      nn.Conv2d(6, 16, 5),      nn.BatchNorm2d(16),      nn.ReLU(True),      nn.MaxPool2d(2, 2)    )        self.classfy = nn.Linear(400, 10)  def forward(self, x):    x = self.stage1(x)    x = x.view(x.shape[0], -1)    x = self.classfy(x)    return x net = conv_bn_net()optimizer = torch.optim.SGD(net.parameters(), 1e-1) # 使用随机梯度下降,学习率 0.1  train(net, train_data, test_data, 5, optimizer, criterion)

以上这篇pytorch 图像中的数据预处理和批标准化实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


  • 上一条:
    计算pytorch标准化(Normalize)所需要数据集的均值和方差实例
    下一条:
    pytorch实现特殊的Module--Sqeuential三种写法
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客