PyTorch中 tensor.detach() 和 tensor.data 的区别详解
Python  /  管理员 发布于 5年前   223
PyTorch0.4中,.data 仍保留,但建议使用 .detach(), 区别在于 .data 返回和 x 的相同数据 tensor, 但不会加入到x的计算历史里,且require s_grad = False, 这样有些时候是不安全的, 因为 x.data 不能被 autograd 追踪求微分 。
.detach() 返回相同数据的 tensor ,且 requires_grad=False ,但能通过 in-place 操作报告给 autograd 在进行反向传播的时候.
举例:
tensor.data
>>> a = torch.tensor([1,2,3.], requires_grad =True)>>> out = a.sigmoid()>>> c = out.data>>> c.zero_()tensor([ 0., 0., 0.])>>> out # out的数值被c.zero_()修改tensor([ 0., 0., 0.])>>> out.sum().backward() # 反向传播>>> a.grad # 这个结果很严重的错误,因为out已经改变了tensor([ 0., 0., 0.])
tensor.detach()
>>> a = torch.tensor([1,2,3.], requires_grad =True)>>> out = a.sigmoid()>>> c = out.detach()>>> c.zero_()tensor([ 0., 0., 0.])>>> out # out的值被c.zero_()修改 !!tensor([ 0., 0., 0.])>>> out.sum().backward() # 需要原来out得值,但是已经被c.zero_()覆盖了,结果报错RuntimeError: one of the variables needed for gradientcomputation has been modified by an
以上这篇PyTorch中 tensor.detach() 和 tensor.data 的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
122 在
学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..123 在
Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..原梓番博客 在
在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..博主 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..1111 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
Copyright·© 2019 侯体宗版权所有·
粤ICP备20027696号