侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

pytorch之添加BN的实现

Python  /  管理员 发布于 5年前   169

pytorch之添加BN层

批标准化

模型训练并不容易,特别是一些非常复杂的模型,并不能非常好的训练得到收敛的结果,所以对数据增加一些预处理,同时使用批标准化能够得到非常好的收敛结果,这也是卷积网络能够训练到非常深的层的一个重要原因。

数据预处理

目前数据预处理最常见的方法就是中心化和标准化,中心化相当于修正数据的中心位置,实现方法非常简单,就是在每个特征维度上减去对应的均值,最后得到 0 均值的特征。标准化也非常简单,在数据变成 0 均值之后,为了使得不同的特征维度有着相同的规模,可以除以标准差近似为一个标准正态分布,也可以依据最大值和最小值将其转化为 -1 ~ 1之间,这两种方法非常的常见,如果你还记得,前面我们在神经网络的部分就已经使用了这个方法实现了数据标准化,至于另外一些方法,比如 PCA 或者 白噪声已经用得非常少了。

Batch Normalization

前面在数据预处理的时候,尽量输入特征不相关且满足一个标准的正态分布,

这样模型的表现一般也较好。但是对于很深的网路结构,网路的非线性层会使得输出的结果变得相关,且不再满足一个标准的 N(0, 1) 的分布,甚至输出的中心已经发生了偏移,这对于模型的训练,特别是深层的模型训练非常的困难。

所以在 2015 年一篇论文提出了这个方法,批标准化,简而言之,就是对于每一层网络的输出,对其做一个归一化,使其服从标准的正态分布,这样后一层网络的输入也是一个标准的正态分布,所以能够比较好的进行训练,加快收敛速度。batch normalization 的实现非常简单,对于给定的一个 batch 的数据算法的公式如下

第一行和第二行是计算出一个 batch 中数据的均值和方差,接着使用第三个公式对 batch 中的每个数据点做标准化,ϵ是为了计算稳定引入的一个小的常数,通常取 ,最后利用权重修正得到最后的输出结果,非常的简单,
实现一下简单的一维的情况,也就是神经网络中的情况

import syssys.path.append('..')import torchdef simple_batch_norm_1d(x, gamma, beta): eps = 1e-5 x_mean = torch.mean(x, dim=0, keepdim=True) # 保留维度进行 broadcast x_var = torch.mean((x - x_mean) ** 2, dim=0, keepdim=True) x_hat = (x - x_mean) / torch.sqrt(x_var + eps) return gamma.view_as(x_mean) * x_hat + beta.view_as(x_mean)x = torch.arange(15).view(5, 3)gamma = torch.ones(x.shape[1])beta = torch.zeros(x.shape[1])print('before bn: ')print(x)y = simple_batch_norm_1d(x, gamma, beta)print('after bn: ')print(y)

可以看到这里一共是 5 个数据点,三个特征,每一列表示一个特征的不同数据点,使用批标准化之后,每一列都变成了标准的正态分布这个时候会出现一个问题,就是测试的时候该使用批标准化吗?答案是肯定的,因为训练的时候使用了,而测试的时候不使用肯定会导致结果出现偏差,但是测试的时候如果只有一个数据集,那么均值不就是这个值,方差为 0 吗?这显然是随机的,所以测试的时候不能用测试的数据集去算均值和方差,而是用训练的时候算出的移动平均均值和方差去代替

实现以下能够区分训练状态和测试状态的批标准化方法

def batch_norm_1d(x, gamma, beta, is_training, moving_mean, moving_var, moving_momentum=0.1): eps = 1e-5 x_mean = torch.mean(x, dim=0, keepdim=True) # 保留维度进行 broadcast x_var = torch.mean((x - x_mean) ** 2, dim=0, keepdim=True) if is_training: x_hat = (x - x_mean) / torch.sqrt(x_var + eps) moving_mean[:] = moving_momentum * moving_mean + (1. - moving_momentum) * x_mean moving_var[:] = moving_momentum * moving_var + (1. - moving_momentum) * x_var else: x_hat = (x - moving_mean) / torch.sqrt(moving_var + eps) return gamma.view_as(x_mean) * x_hat + beta.view_as(x_mean)

下面使用深度神经网络分类 mnist 数据集的例子来试验一下批标准化是否有用

import numpy as npfrom torchvision.datasets import mnist # 导入 pytorch 内置的 mnist 数据from torch.utils.data import DataLoaderfrom torch import nnfrom torch.autograd import Variable

使用内置函数下载 mnist 数据集

train_set = mnist.MNIST('./data', train=True)test_set = mnist.MNIST('./data', train=False)def data_tf(x): x = np.array(x, dtype='float32') / 255 x = (x - 0.5) / 0.5 # 数据预处理,标准化 x = x.reshape((-1,)) # 拉平 x = torch.from_numpy(x) return xtrain_set = mnist.MNIST('./data', train=True, transform=data_tf, download=True) # 重新载入数据集,申明定义的数据变换test_set = mnist.MNIST('./data', train=False, transform=data_tf, download=True)train_data = DataLoader(train_set, batch_size=64, shuffle=True)test_data = DataLoader(test_set, batch_size=128, shuffle=False)class multi_network(nn.Module): def __init__(self): super(multi_network, self).__init__() self.layer1 = nn.Linear(784, 100) self.relu = nn.ReLU(True) self.layer2 = nn.Linear(100, 10)  self.gamma = nn.Parameter(torch.randn(100)) self.beta = nn.Parameter(torch.randn(100))  self.moving_mean = Variable(torch.zeros(100)) self.moving_var = Variable(torch.zeros(100))  def forward(self, x, is_train=True): x = self.layer1(x) x = batch_norm_1d(x, self.gamma, self.beta, is_train, self.moving_mean, self.moving_var) x = self.relu(x) x = self.layer2(x) return xnet = multi_network()# 定义 loss 函数criterion = nn.CrossEntropyLoss()optimizer = torch.optim.SGD(net.parameters(), 1e-1) # 使用随机梯度下降,学习率 0.1from datetime import datetimeimport torchimport torch.nn.functional as Ffrom torch import nnfrom torch.autograd import Variabledef get_acc(output, label): total = output.shape[0] _, pred_label = output.max(1) num_correct = (pred_label == label).sum().item() return num_correct / total#定义训练函数def train(net, train_data, valid_data, num_epochs, optimizer, criterion): if torch.cuda.is_available(): net = net.cuda() prev_time = datetime.now() for epoch in range(num_epochs): train_loss = 0 train_acc = 0 net = net.train() for im, label in train_data:  if torch.cuda.is_available():  im = Variable(im.cuda()) # (bs, 3, h, w)  label = Variable(label.cuda()) # (bs, h, w)  else:  im = Variable(im)  label = Variable(label)  # forward  output = net(im)  loss = criterion(output, label)  # backward  optimizer.zero_grad()  loss.backward()  optimizer.step() train_loss += loss.item() train_acc += get_acc(output, label) cur_time = datetime.now() h, remainder = divmod((cur_time - prev_time).seconds, 3600) m, s = divmod(remainder, 60) time_str = "Time %02d:%02d:%02d" % (h, m, s) if valid_data is not None: valid_loss = 0 valid_acc = 0 net = net.eval() for im, label in valid_data:  if torch.cuda.is_available():  im = Variable(im.cuda(), volatile=True)  label = Variable(label.cuda(), volatile=True)  else:  im = Variable(im, volatile=True)  label = Variable(label, volatile=True)  output = net(im)  loss = criterion(output, label)  valid_loss += loss.item()  valid_acc += get_acc(output, label) epoch_str = (  "Epoch %d. Train Loss: %f, Train Acc: %f, Valid Loss: %f, Valid Acc: %f, "  % (epoch, train_loss / len(train_data),  train_acc / len(train_data), valid_loss / len(valid_data),  valid_acc / len(valid_data))) else: epoch_str = ("Epoch %d. Train Loss: %f, Train Acc: %f, " %   (epoch, train_loss / len(train_data),   train_acc / len(train_data))) prev_time = cur_time print(epoch_str + time_str)train(net, train_data, test_data, 10, optimizer, criterion)

#这里的 γ和
β
β都作为参数进行训练,初始化为随机的高斯分布,

#moving_mean 和 moving_var 都初始化为 0,并不是更新的参数,训练完 10 次之后,我们可以看看移动平均和移动方差被修改为了多少

#打出 moving_mean 的前 10 项

print(net.moving_mean[:10])no_bn_net = nn.Sequential( nn.Linear(784, 100), nn.ReLU(True), nn.Linear(100, 10))optimizer = torch.optim.SGD(no_bn_net.parameters(), 1e-1) # 使用随机梯度下降,学习率 0.1train(no_bn_net, train_data, test_data, 10, optimizer, criterion)

可以看到虽然最后的结果两种情况一样,但是如果我们看前几次的情况,可以看到使用批标准化的情况能够更快的收敛,因为这只是一个小网络,所以用不用批标准化都能够收敛,但是对于更加深的网络,使用批标准化在训练的时候能够很快地收敛从上面可以看到,我们自己实现了 2 维情况的批标准化,对应于卷积的 4 维情况的标准化是类似的,只需要沿着通道的维度进行均值和方差的计算,但是我们自己实现批标准化是很累的,pytorch 当然也为我们内置了批标准化的函数,一维和二维分别是 torch.nn.BatchNorm1d() 和 torch.nn.BatchNorm2d(),不同于我们的实现,pytorch 不仅将
γ
γ和 β作为训练的参数,也将 moving_mean 和 moving_var 也作为参数进行训练

下面在卷积网络下试用一下批标准化看看效果

def data_tf(x): x = np.array(x, dtype='float32') / 255 x = (x - 0.5) / 0.5 # 数据预处理,标准化 x = torch.from_numpy(x) x = x.unsqueeze(0) return xtrain_set = mnist.MNIST('./data', train=True, transform=data_tf, download=True) # 重新载入数据集,申明定义的数据变换test_set = mnist.MNIST('./data', train=False, transform=data_tf, download=True)train_data = DataLoader(train_set, batch_size=64, shuffle=True)test_data = DataLoader(test_set, batch_size=128, shuffle=False)

使用批标准化

class conv_bn_net(nn.Module): def __init__(self): super(conv_bn_net, self).__init__() self.stage1 = nn.Sequential(  nn.Conv2d(1, 6, 3, padding=1),  nn.BatchNorm2d(6),  nn.ReLU(True),  nn.MaxPool2d(2, 2),  nn.Conv2d(6, 16, 5),  nn.BatchNorm2d(16),  nn.ReLU(True),  nn.MaxPool2d(2, 2) )  self.classfy = nn.Linear(400, 10) def forward(self, x): x = self.stage1(x) x = x.view(x.shape[0], -1) x = self.classfy(x) return xnet = conv_bn_net()optimizer = torch.optim.SGD(net.parameters(), 1e-1) # 使用随机梯度下降,学习率 0.1train(net, train_data, test_data, 5, optimizer, criterion)

不使用批标准化

class conv_no_bn_net(nn.Module): def __init__(self): super(conv_no_bn_net, self).__init__() self.stage1 = nn.Sequential(  nn.Conv2d(1, 6, 3, padding=1),  nn.ReLU(True),  nn.MaxPool2d(2, 2),  nn.Conv2d(6, 16, 5),  nn.ReLU(True),  nn.MaxPool2d(2, 2) )  self.classfy = nn.Linear(400, 10) def forward(self, x): x = self.stage1(x) x = x.view(x.shape[0], -1) x = self.classfy(x) return xnet = conv_no_bn_net()optimizer = torch.optim.SGD(net.parameters(), 1e-1) # 使用随机梯度下降,学习率 0.1train(net, train_data, test_data, 5, optimizer, criterion)

以上这篇pytorch之添加BN的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


  • 上一条:
    pytorch之inception_v3的实现案例
    下一条:
    PyTorch学习:动态图和静态图的例子
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客