侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

pytorch载入预训练模型后,实现训练指定层

Python  /  管理员 发布于 5年前   661

1、有了已经训练好的模型参数,对这个模型的某些层做了改变,如何利用这些训练好的模型参数继续训练:

pretrained_params = torch.load('Pretrained_Model')model = The_New_Model(xxx)model.load_state_dict(pretrained_params.state_dict(), strict=False)

strict=False 使得预训练模型参数中和新模型对应上的参数会被载入,对应不上或没有的参数被抛弃。

2、如果载入的这些参数中,有些参数不要求被更新,即固定不变,不参与训练,需要手动设置这些参数的梯度属性为Fasle,并且在optimizer传参时筛选掉这些参数:

# 载入预训练模型参数后...for name, value in model.named_parameters():  if name 满足某些条件:    value.requires_grad = False# setup optimizerparams = filter(lambda p: p.requires_grad, model.parameters())optimizer = torch.optim.Adam(params, lr=1e-4)

将满足条件的参数的 requires_grad 属性设置为False, 同时 filter 函数将模型中属性 requires_grad = True 的参数帅选出来,传到优化器(以Adam为例)中,只有这些参数会被求导数和更新。

3、如果载入的这些参数中,所有参数都更新,但要求一些参数和另一些参数的更新速度(学习率learning rate)不一样,最好知道这些参数的名称都有什么:

# 载入预训练模型参数后...for name, value in model.named_parameters():  print(name)# 或print(model.state_dict().keys())

假设该模型中有encoder,viewer和decoder两部分,参数名称分别是:

'encoder.visual_emb.0.weight','encoder.visual_emb.0.bias','viewer.bd.Wsi','viewer.bd.bias','decoder.core.layer_0.weight_ih','decoder.core.layer_0.weight_hh',

假设要求encode、viewer的学习率为1e-6, decoder的学习率为1e-4,那么在将参数传入优化器时:

ignored_params = list(map(id, model.decoder.parameters()))base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())optimizer = torch.optim.Adam([{'params':base_params,'lr':1e-6},   {'params':model.decoder.parameters()}   ],   lr=1e-4, momentum=0.9)

代码的结果是除decoder参数的learning_rate=1e-4 外,其他参数的额learning_rate=1e-6。

在传入optimizer时,和一般的传参方法torch.optim.Adam(model.parameters(), lr=xxx) 不同,参数部分用了一个list, list的每个元素有params和lr两个键值。如果没有 lr则应用Adam的lr属性。Adam的属性除了lr, 其他都是参数所共有的(比如momentum)。

以上这篇pytorch载入预训练模型后,实现训练指定层就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

参考:

pytorch官方文档

https:///article/134943.htm


  • 上一条:
    pytorch 实现模型不同层设置不同的学习率方式
    下一条:
    Pytorch 实现冻结指定卷积层的参数
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客