侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

Pytorch提取模型特征向量保存至csv的例子

Python  /  管理员 发布于 5年前   339

Pytorch提取模型特征向量

# -*- coding: utf-8 -*-"""dj"""import torchimport torch.nn as nnimport osfrom torchvision import models, transformsfrom torch.autograd import Variable import numpy as npfrom PIL import Image import torchvision.models as modelsimport pretrainedmodelsimport pandas as pdclass FCViewer(nn.Module): def forward(self, x):  return x.view(x.size(0), -1)class M(nn.Module): def __init__(self, backbone1, drop, pretrained=True):  super(M,self).__init__()  if pretrained:   img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained='imagenet')   else:   img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained=None)    self.img_encoder = list(img_model.children())[:-2]  self.img_encoder.append(nn.AdaptiveAvgPool2d(1))  self.img_encoder = nn.Sequential(*self.img_encoder)  if drop > 0:   self.img_fc = nn.Sequential(FCViewer())           else:   self.img_fc = nn.Sequential(    FCViewer()) def forward(self, x_img):  x_img = self.img_encoder(x_img)  x_img = self.img_fc(x_img)  return x_img model1=M('resnet18',0,pretrained=True)features_dir = '/home/cc/Desktop/features' transform1 = transforms.Compose([  transforms.Resize(256),  transforms.CenterCrop(224),  transforms.ToTensor()]) file_path='/home/cc/Desktop/picture'names = os.listdir(file_path)print(names)for name in names: pic=file_path+'/'+name img = Image.open(pic) img1 = transform1(img) x = Variable(torch.unsqueeze(img1, dim=0).float(), requires_grad=False) y = model1(x) y = y.data.numpy() y = y.tolist() #print(y) test=pd.DataFrame(data=y) #print(test) test.to_csv("/home/cc/Desktop/features/3.csv",mode='a+',index=None,header=None)

jiazaixunlianhaodemoxing

import torchimport torch.nn.functional as Fimport torch.nn as nnimport torch.optim as optimimport torchvisionimport torchvision.transforms as transformsimport argparseclass ResidualBlock(nn.Module): def __init__(self, inchannel, outchannel, stride=1):  super(ResidualBlock, self).__init__()  self.left = nn.Sequential(   nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False),   nn.BatchNorm2d(outchannel),   nn.ReLU(inplace=True),   nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1, padding=1, bias=False),   nn.BatchNorm2d(outchannel)  )  self.shortcut = nn.Sequential()  if stride != 1 or inchannel != outchannel:   self.shortcut = nn.Sequential(    nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False),    nn.BatchNorm2d(outchannel)   ) def forward(self, x):  out = self.left(x)  out += self.shortcut(x)  out = F.relu(out)  return outclass ResNet(nn.Module): def __init__(self, ResidualBlock, num_classes=10):  super(ResNet, self).__init__()  self.inchannel = 64  self.conv1 = nn.Sequential(   nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),   nn.BatchNorm2d(64),   nn.ReLU(),  )  self.layer1 = self.make_layer(ResidualBlock, 64, 2, stride=1)  self.layer2 = self.make_layer(ResidualBlock, 128, 2, stride=2)  self.layer3 = self.make_layer(ResidualBlock, 256, 2, stride=2)  self.layer4 = self.make_layer(ResidualBlock, 512, 2, stride=2)  self.fc = nn.Linear(512, num_classes) def make_layer(self, block, channels, num_blocks, stride):  strides = [stride] + [1] * (num_blocks - 1) #strides=[1,1]  layers = []  for stride in strides:   layers.append(block(self.inchannel, channels, stride))   self.inchannel = channels  return nn.Sequential(*layers) def forward(self, x):  out = self.conv1(x)  out = self.layer1(out)  out = self.layer2(out)  out = self.layer3(out)  out = self.layer4(out)  out = F.avg_pool2d(out, 4)  out = out.view(out.size(0), -1)  out = self.fc(out)  return outdef ResNet18(): return ResNet(ResidualBlock)import osfrom torchvision import models, transformsfrom torch.autograd import Variable import numpy as npfrom PIL import Image import torchvision.models as modelsimport pretrainedmodelsimport pandas as pdclass FCViewer(nn.Module): def forward(self, x):  return x.view(x.size(0), -1)class M(nn.Module): def __init__(self, backbone1, drop, pretrained=True):  super(M,self).__init__()  if pretrained:   img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained='imagenet')   else:   img_model = ResNet18()   we='/home/cc/Desktop/dj/model1/incption--7'   # 模型定义-ResNet   #net = ResNet18().to(device)   img_model.load_state_dict(torch.load(we))#diaoyong    self.img_encoder = list(img_model.children())[:-2]  self.img_encoder.append(nn.AdaptiveAvgPool2d(1))  self.img_encoder = nn.Sequential(*self.img_encoder)  if drop > 0:   self.img_fc = nn.Sequential(FCViewer())           else:   self.img_fc = nn.Sequential(    FCViewer()) def forward(self, x_img):  x_img = self.img_encoder(x_img)  x_img = self.img_fc(x_img)  return x_img model1=M('resnet18',0,pretrained=None)features_dir = '/home/cc/Desktop/features' transform1 = transforms.Compose([  transforms.Resize(56),  transforms.CenterCrop(32),  transforms.ToTensor()]) file_path='/home/cc/Desktop/picture'names = os.listdir(file_path)print(names)for name in names: pic=file_path+'/'+name img = Image.open(pic) img1 = transform1(img) x = Variable(torch.unsqueeze(img1, dim=0).float(), requires_grad=False) y = model1(x) y = y.data.numpy() y = y.tolist() #print(y) test=pd.DataFrame(data=y) #print(test) test.to_csv("/home/cc/Desktop/features/3.csv",mode='a+',index=None,header=None)

以上这篇Pytorch提取模型特征向量保存至csv的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


  • 上一条:
    PyTorch里面的torch.nn.Parameter()详解
    下一条:
    pytorch查看torch.Tensor和model是否在CUDA上的实例
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客