侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

pytorch中的上采样以及各种反操作,求逆操作详解

Python  /  管理员 发布于 5年前   395

import torch.nn.functional as F

import torch.nn as nn

F.upsample(input, size=None, scale_factor=None,mode='nearest', align_corners=None)

  r"""Upsamples the input to either the given :attr:`size` or the given  :attr:`scale_factor`  The algorithm used for upsampling is determined by :attr:`mode`.  Currently temporal, spatial and volumetric upsampling are supported, i.e.  expected inputs are 3-D, 4-D or 5-D in shape.  The input dimensions are interpreted in the form:  `mini-batch x channels x [optional depth] x [optional height] x width`.  The modes available for upsampling are: `nearest`, `linear` (3D-only),  `bilinear` (4D-only), `trilinear` (5D-only)  Args:    input (Tensor): the input tensor    size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):      output spatial size.    scale_factor (int): multiplier for spatial size. Has to be an integer.    mode (string): algorithm used for upsampling:      'nearest' | 'linear' | 'bilinear' | 'trilinear'. Default: 'nearest'    align_corners (bool, optional): if True, the corner pixels of the input      and output tensors are aligned, and thus preserving the values at      those pixels. This only has effect when :attr:`mode` is `linear`,      `bilinear`, or `trilinear`. Default: False  .. warning::    With ``align_corners = True``, the linearly interpolating modes    (`linear`, `bilinear`, and `trilinear`) don't proportionally align the    output and input pixels, and thus the output values can depend on the    input size. This was the default behavior for these modes up to version    0.3.1. Since then, the default behavior is ``align_corners = False``.    See :class:`~torch.nn.Upsample` for concrete examples on how this    affects the outputs.  """

nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1)

"""Parameters:   in_channels (int) C Number of channels in the input image  out_channels (int) C Number of channels produced by the convolution  kernel_size (int or tuple) C Size of the convolving kernel  stride (int or tuple, optional) C Stride of the convolution. Default: 1  padding (int or tuple, optional) C kernel_size - 1 - padding zero-padding will be added to both sides of each dimension in the input. Default: 0  output_padding (int or tuple, optional) C Additional size added to one side of each dimension in the output shape. Default: 0  groups (int, optional) C Number of blocked connections from input channels to output channels. Default: 1  bias (bool, optional) C If True, adds a learnable bias to the output. Default: True  dilation (int or tuple, optional) C Spacing between kernel elements. Default: 1"""

计算方式:

定义:nn.MaxUnpool2d(kernel_size, stride=None, padding=0)

调用:

def forward(self, input, indices, output_size=None):  return F.max_unpool2d(input, indices, self.kernel_size, self.stride, self.padding, output_size)
   r"""Computes a partial inverse of :class:`MaxPool2d`.  :class:`MaxPool2d` is not fully invertible, since the non-maximal values are lost.  :class:`MaxUnpool2d` takes in as input the output of :class:`MaxPool2d`  including the indices of the maximal values and computes a partial inverse  in which all non-maximal values are set to zero.  .. note:: `MaxPool2d` can map several input sizes to the same output sizes.       Hence, the inversion process can get ambiguous.       To accommodate this, you can provide the needed output size       as an additional argument `output_size` in the forward call.       See the Inputs and Example below.  Args:    kernel_size (int or tuple): Size of the max pooling window.    stride (int or tuple): Stride of the max pooling window.      It is set to ``kernel_size`` by default.    padding (int or tuple): Padding that was added to the input  Inputs:    - `input`: the input Tensor to invert    - `indices`: the indices given out by `MaxPool2d`    - `output_size` (optional) : a `torch.Size` that specifies the targeted output size  Shape:    - Input: :math:`(N, C, H_{in}, W_{in})`    - Output: :math:`(N, C, H_{out}, W_{out})` where  计算公式:见下面  Example: 见下面  """

F. max_unpool2d(input, indices, kernel_size, stride=None, padding=0, output_size=None)

见上面的用法一致!

def max_unpool2d(input, indices, kernel_size, stride=None, padding=0,         output_size=None):  r"""Computes a partial inverse of :class:`MaxPool2d`.  See :class:`~torch.nn.MaxUnpool2d` for details.  """  pass

以上这篇pytorch中的上采样以及各种反操作,求逆操作详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


  • 上一条:
    pytorch 数据处理:定义自己的数据集合实例
    下一条:
    pytorch 获取tensor维度信息示例
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客