pytorch 归一化与反归一化实例
Python / 管理员 发布于 5年前 463
ToTensor中就有转到0-1之间了。
# -*- coding:utf-8 -*- import time import torch from torchvision import transforms import cv2 transform_val_list = [ # transforms.Resize(size=(160, 160), interpolation=3), # Image.BICUBIC transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])] trans_compose = transforms.Compose(transform_val_list) if __name__ == '__main__': std= [0.229, 0.224, 0.225] mean=[0.485, 0.456, 0.406] path="d:/2.jpg" data=cv2.imread(path) t1 = time.time() x = trans_compose(data) x[0]=x[0]*std[0]+mean[0] x[1]=x[1]*std[1]+mean[1] x[2]=x[2].mul(std[2])+mean[2] img = x.mul(255).byte() img = img.numpy().transpose((1, 2, 0)) # torch.set_num_threads(3) # img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB) cv2.imshow("sdf", img) cv2.waitKeyEx()
这个测试时间:归一化与反归一化都需要7ms左右,
但是在多路摄像头中,可能比较慢。
std= [0.229, 0.224, 0.225] mean=[0.485, 0.456, 0.406] path="d:/2.jpg" data=cv2.imread(path) t1 = time.time() start = time.time() x = trans_compose(data) print("gui", time.time() - start) for i in range(10): start=time.time() for i in range(len(mean)): # x[i]=x[i]*std[i]+mean[i] x[i]=x[i].mul(std[i])+mean[i] img = x.mul(255).byte() img = img.numpy().transpose((1, 2, 0)) print("fan",time.time()-start) # torch.set_num_threads(3) # img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB) cv2.imshow("sdf", img) cv2.waitKeyEx()
以上这篇pytorch 归一化与反归一化实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
122 在
学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..123 在
Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..原梓番博客 在
在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..博主 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..1111 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
Copyright·© 2019 侯体宗版权所有·
粤ICP备20027696号