侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

pytorch中获取模型input/output shape实例

Python  /  管理员 发布于 5年前   544

Pytorch官方目前无法像tensorflow, caffe那样直接给出shape信息,详见

https://github.com/pytorch/pytorch/pull/3043

以下代码算一种workaround。由于CNN, RNN等模块实现不一样,添加其他模块支持可能需要改代码。

例如RNN中bias是bool类型,其权重也不是存于weight属性中,不过我们只关注shape够用了。

该方法必须构造一个输入调用forward后(model(x)调用)才可获取shape

#coding:utf-8from collections import OrderedDictimport torchfrom torch.autograd import Variableimport torch.nn as nnimport models.crnn as crnnimport json  def get_output_size(summary_dict, output): if isinstance(output, tuple): for i in xrange(len(output)):  summary_dict[i] = OrderedDict()  summary_dict[i] = get_output_size(summary_dict[i],output[i]) else: summary_dict['output_shape'] = list(output.size()) return summary_dict def summary(input_size, model): def register_hook(module): def hook(module, input, output):  class_name = str(module.__class__).split('.')[-1].split("'")[0]  module_idx = len(summary)   m_key = '%s-%i' % (class_name, module_idx+1)  summary[m_key] = OrderedDict()  summary[m_key]['input_shape'] = list(input[0].size())  summary[m_key] = get_output_size(summary[m_key], output)   params = 0  if hasattr(module, 'weight'):  params += torch.prod(torch.LongTensor(list(module.weight.size())))  if module.weight.requires_grad:   summary[m_key]['trainable'] = True  else:   summary[m_key]['trainable'] = False  #if hasattr(module, 'bias'):  # params += torch.prod(torch.LongTensor(list(module.bias.size())))   summary[m_key]['nb_params'] = params   if not isinstance(module, nn.Sequential) and \  not isinstance(module, nn.ModuleList) and \  not (module == model):  hooks.append(module.register_forward_hook(hook))  # check if there are multiple inputs to the network if isinstance(input_size[0], (list, tuple)): x = [Variable(torch.rand(1,*in_size)) for in_size in input_size] else: x = Variable(torch.rand(1,*input_size))  # create properties summary = OrderedDict() hooks = [] # register hook model.apply(register_hook) # make a forward pass model(x) # remove these hooks for h in hooks: h.remove()  return summary crnn = crnn.CRNN(32, 1, 3755, 256, 1)x = summary([1,32,128],crnn)print json.dumps(x)

以pytorch版CRNN为例,输出shape如下

{"Conv2d-1": {"input_shape": [1, 1, 32, 128],"output_shape": [1, 64, 32, 128],"trainable": true,"nb_params": 576},"ReLU-2": {"input_shape": [1, 64, 32, 128],"output_shape": [1, 64, 32, 128],"nb_params": 0},"MaxPool2d-3": {"input_shape": [1, 64, 32, 128],"output_shape": [1, 64, 16, 64],"nb_params": 0},"Conv2d-4": {"input_shape": [1, 64, 16, 64],"output_shape": [1, 128, 16, 64],"trainable": true,"nb_params": 73728},"ReLU-5": {"input_shape": [1, 128, 16, 64],"output_shape": [1, 128, 16, 64],"nb_params": 0},"MaxPool2d-6": {"input_shape": [1, 128, 16, 64],"output_shape": [1, 128, 8, 32],"nb_params": 0},"Conv2d-7": {"input_shape": [1, 128, 8, 32],"output_shape": [1, 256, 8, 32],"trainable": true,"nb_params": 294912},"BatchNorm2d-8": {"input_shape": [1, 256, 8, 32],"output_shape": [1, 256, 8, 32],"trainable": true,"nb_params": 256},"ReLU-9": {"input_shape": [1, 256, 8, 32],"output_shape": [1, 256, 8, 32],"nb_params": 0},"Conv2d-10": {"input_shape": [1, 256, 8, 32],"output_shape": [1, 256, 8, 32],"trainable": true,"nb_params": 589824},"ReLU-11": {"input_shape": [1, 256, 8, 32],"output_shape": [1, 256, 8, 32],"nb_params": 0},"MaxPool2d-12": {"input_shape": [1, 256, 8, 32],"output_shape": [1, 256, 4, 33],"nb_params": 0},"Conv2d-13": {"input_shape": [1, 256, 4, 33],"output_shape": [1, 512, 4, 33],"trainable": true,"nb_params": 1179648},"BatchNorm2d-14": {"input_shape": [1, 512, 4, 33],"output_shape": [1, 512, 4, 33],"trainable": true,"nb_params": 512},"ReLU-15": {"input_shape": [1, 512, 4, 33],"output_shape": [1, 512, 4, 33],"nb_params": 0},"Conv2d-16": {"input_shape": [1, 512, 4, 33],"output_shape": [1, 512, 4, 33],"trainable": true,"nb_params": 2359296},"ReLU-17": {"input_shape": [1, 512, 4, 33],"output_shape": [1, 512, 4, 33],"nb_params": 0},"MaxPool2d-18": {"input_shape": [1, 512, 4, 33],"output_shape": [1, 512, 2, 34],"nb_params": 0},"Conv2d-19": {"input_shape": [1, 512, 2, 34],"output_shape": [1, 512, 1, 33],"trainable": true,"nb_params": 1048576},"BatchNorm2d-20": {"input_shape": [1, 512, 1, 33],"output_shape": [1, 512, 1, 33],"trainable": true,"nb_params": 512},"ReLU-21": {"input_shape": [1, 512, 1, 33],"output_shape": [1, 512, 1, 33],"nb_params": 0},"LSTM-22": {"input_shape": [33, 1, 512],"0": {"output_shape": [33, 1, 512]},"1": {"0": {"output_shape": [2, 1, 256]},"1": {"output_shape": [2, 1, 256]}},"nb_params": 0},"Linear-23": {"input_shape": [33, 512],"output_shape": [33, 256],"trainable": true,"nb_params": 131072},"BidirectionalLSTM-24": {"input_shape": [33, 1, 512],"output_shape": [33, 1, 256],"nb_params": 0},"LSTM-25": {"input_shape": [33, 1, 256],"0": {"output_shape": [33, 1, 512]},"1": {"0": {"output_shape": [2, 1, 256]},"1": {"output_shape": [2, 1, 256]}},"nb_params": 0},"Linear-26": {"input_shape": [33, 512],"output_shape": [33, 3755],"trainable": true,"nb_params": 1922560},"BidirectionalLSTM-27": {"input_shape": [33, 1, 256],"output_shape": [33, 1, 3755],"nb_params": 0}}

以上这篇pytorch中获取模型input/output shape实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


  • 上一条:
    pytorch获取模型某一层参数名及参数值方式
    下一条:
    Pytorch Tensor的统计属性实例讲解
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 智能合约Solidity学习CryptoZombie二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客