numpy中三维数组中加入元素后的位置详解
Python  /  管理员 发布于 5年前   508
今天做数据处理时,遇到了从三维数组中批量加入二维数组的需求。其中三维数组在深度学习的特征数据处理时经常会使用到,所以读者有必要对该小知识点做到清楚了解并掌握。现对三维数组中的元素位置结合代码做详细归纳总结,方便日后查阅和为网友答疑!
图示效果图:
直接贴代码:
def test3D(): import numpy as np data_array = np.zeros((3, 5, 6), dtype=np.int) data_array[1, 2, 2] = 1 print(data_array)
介绍:通过np.zeros创建一个3行5列6个通道的三维数组,并给第二个通道的第一行第二列赋值1.
运行结果图:
分析: 有运行结果可知,创建了六个通道,在深度学习中这六个通道相当于六个Feature Map,对应结果图中的六列。
再向外看一层,共有三个块,每个块代表这个通道的第几行数据。
每个块里有五行数据,每一行代表每个通道的第几列数据
所以,代码中的赋值语句: data_array[1, 2, 2] = 1
表示为第2个通道,下标从0开始,所以在图中位置为第三列;第1行第2列,下标从0开始,所以图中表示第二个块的第三行;即为图中所示位置。
补充:三维数组的求和
多维数组的轴(axis=)是和该数组的size(或者shape)的元素是相对应的;
>>> np.random.seed(123)>>> X = np.random.randint(0, 5, [3, 2, 2])>>> print(X) [[[5 2] [4 2]] [[1 3] [2 3]] [[1 1] [0 1]]] >>> X.sum(axis=0)array([[7, 6], [6, 6]]) >>> X.sum(axis=1)array([[9, 4], [3, 6], [1, 2]]) >>> X.sum(axis=2)array([[7, 6], [4, 5], [2, 1]])
如果将三维数组的每一个二维看做一个平面(plane,X[0, :, :], X[1, :, :], X[2, :, :]),三维数组即是这些二维平面层叠(stacked)出来的结果。则(axis=0)表示全部平面上的对应位置,(axis=1),每一个平面的每一列,(axis=2),每一个平面的每一行。
以上这篇numpy中三维数组中加入元素后的位置详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
122 在
学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..123 在
Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..原梓番博客 在
在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..博主 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..1111 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
Copyright·© 2019 侯体宗版权所有·
粤ICP备20027696号