侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

对pytorch中的梯度更新方法详解

Python  /  管理员 发布于 5年前   297

背景

使用pytorch时,有一个yolov3的bug,我认为涉及到学习率的调整。收集到tencent yolov3和mxnet开源的yolov3,两个优化器中的学习率设置不一样,而且使用GPU数目和batch的更新也不太一样。据此,我简单的了解了下pytorch的权重梯度的更新策略,看看能否一窥究竟。

对代码说明

共三个实验,分布写在代码中的(一)(二)(三)三个地方。运行实验时注释掉其他两个

实验及其结果

实验(三):

不使用zero_grad()时,grad累加在一起,官网是使用accumulate 来表述的,所以不太清楚是取的和还是均值(这两种最有可能)。

不使用zero_grad()时,是直接叠加add的方式累加的。

tensor([[[ 1., 1.],……torch.Size([2, 2, 2])0 2 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * tensor([[[ 2., 2.],…… torch.Size([2, 2, 2])1 2 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * tensor([[[ 3., 3.],…… torch.Size([2, 2, 2])2 2 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

实验(二):

单卡上不同的batchsize对梯度是怎么作用的。 mini-batch SGD中的batch是加快训练,同时保持一定的噪声。但设置不同的batchsize的权重的梯度是怎么计算的呢。

设置运行实验(二),可以看到结果如下:所以单卡batchsize计算梯度是取均值的

tensor([[[ 3., 3.],…… torch.Size([2, 2, 2])

实验(一):

多gpu情况下,梯度怎么合并在一起的。

在《training imagenet in 1 hours》中提到grad是allreduce的,是累加的形式。但是当设置g=2,实验一运行时,结果也是取均值的,类同于实验(二)

tensor([[[ 3., 3.],…… torch.Size([2, 2, 2])

实验代码

import torchimport torch.nn as nnfrom torch.autograd import Variableclass model(nn.Module): def __init__(self, w):  super(model, self).__init__()  self.w = w def forward(self, xx):  b, c, _, _ = xx.shape  # extra = xx.device.index + 1 ## 实验(一)  y = xx.reshape(b, -1).mm(self.w.cuda(xx.device).reshape(-1, 2) * extra)  return y.reshape(len(xx), -1)g = 1x = Variable(torch.ones(2, 1, 2, 2))# x[1] += 1 ## 实验(二)w = Variable(torch.ones(2, 2, 2) * 2, requires_grad=True)# optim = torch.optim.SGD({'params': x},lr = 0.01momentum = 0.9M = model(w)M = torch.nn.DataParallel(M, device_ids=range(g))for i in range(3): b = len(x) z = M(x) zz = z.sum(1) l = (zz - Variable(torch.ones(b).cuda())).mean() # zz.backward(Variable(torch.ones(b).cuda())) l.backward() print(w.grad, w.grad.shape) # w.grad.zero_() ## 实验(三) print(i, b, '* * ' * 20)

以上这篇对pytorch中的梯度更新方法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


  • 上一条:
    关于pytorch中网络loss传播和参数更新的理解
    下一条:
    PyTorch: 梯度下降及反向传播的实例详解
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客