获取Pytorch中间某一层权重或者特征的例子
Python  /  管理员 发布于 5年前   237
问题:训练好的网络模型想知道中间某一层的权重或者看看中间某一层的特征,如何处理呢?
1、获取某一层权重,并保存到excel中;
以resnet18为例说明:
import torchimport pandas as pdimport numpy as npimport torchvision.models as modelsresnet18 = models.resnet18(pretrained=True)parm={}for name,parameters in resnet18.named_parameters(): print(name,':',parameters.size()) parm[name]=parameters.detach().numpy()
上述代码将每个模块参数存入parm字典中,parameters.detach().numpy()将tensor类型变量转换成numpy array形式,方便后续存储到表格中.输出为:
conv1.weight : torch.Size([64, 3, 7, 7])bn1.weight : torch.Size([64])bn1.bias : torch.Size([64])layer1.0.conv1.weight : torch.Size([64, 64, 3, 3])layer1.0.bn1.weight : torch.Size([64])layer1.0.bn1.bias : torch.Size([64])layer1.0.conv2.weight : torch.Size([64, 64, 3, 3])layer1.0.bn2.weight : torch.Size([64])layer1.0.bn2.bias : torch.Size([64])layer1.1.conv1.weight : torch.Size([64, 64, 3, 3])layer1.1.bn1.weight : torch.Size([64])layer1.1.bn1.bias : torch.Size([64])layer1.1.conv2.weight : torch.Size([64, 64, 3, 3])layer1.1.bn2.weight : torch.Size([64])layer1.1.bn2.bias : torch.Size([64])layer2.0.conv1.weight : torch.Size([128, 64, 3, 3])layer2.0.bn1.weight : torch.Size([128])layer2.0.bn1.bias : torch.Size([128])layer2.0.conv2.weight : torch.Size([128, 128, 3, 3])layer2.0.bn2.weight : torch.Size([128])layer2.0.bn2.bias : torch.Size([128])layer2.0.downsample.0.weight : torch.Size([128, 64, 1, 1])layer2.0.downsample.1.weight : torch.Size([128])layer2.0.downsample.1.bias : torch.Size([128])layer2.1.conv1.weight : torch.Size([128, 128, 3, 3])layer2.1.bn1.weight : torch.Size([128])layer2.1.bn1.bias : torch.Size([128])layer2.1.conv2.weight : torch.Size([128, 128, 3, 3])layer2.1.bn2.weight : torch.Size([128])layer2.1.bn2.bias : torch.Size([128])layer3.0.conv1.weight : torch.Size([256, 128, 3, 3])layer3.0.bn1.weight : torch.Size([256])layer3.0.bn1.bias : torch.Size([256])layer3.0.conv2.weight : torch.Size([256, 256, 3, 3])layer3.0.bn2.weight : torch.Size([256])layer3.0.bn2.bias : torch.Size([256])layer3.0.downsample.0.weight : torch.Size([256, 128, 1, 1])layer3.0.downsample.1.weight : torch.Size([256])layer3.0.downsample.1.bias : torch.Size([256])layer3.1.conv1.weight : torch.Size([256, 256, 3, 3])layer3.1.bn1.weight : torch.Size([256])layer3.1.bn1.bias : torch.Size([256])layer3.1.conv2.weight : torch.Size([256, 256, 3, 3])layer3.1.bn2.weight : torch.Size([256])layer3.1.bn2.bias : torch.Size([256])layer4.0.conv1.weight : torch.Size([512, 256, 3, 3])layer4.0.bn1.weight : torch.Size([512])layer4.0.bn1.bias : torch.Size([512])layer4.0.conv2.weight : torch.Size([512, 512, 3, 3])layer4.0.bn2.weight : torch.Size([512])layer4.0.bn2.bias : torch.Size([512])layer4.0.downsample.0.weight : torch.Size([512, 256, 1, 1])layer4.0.downsample.1.weight : torch.Size([512])layer4.0.downsample.1.bias : torch.Size([512])layer4.1.conv1.weight : torch.Size([512, 512, 3, 3])layer4.1.bn1.weight : torch.Size([512])layer4.1.bn1.bias : torch.Size([512])layer4.1.conv2.weight : torch.Size([512, 512, 3, 3])layer4.1.bn2.weight : torch.Size([512])layer4.1.bn2.bias : torch.Size([512])fc.weight : torch.Size([1000, 512])fc.bias : torch.Size([1000])
parm['layer1.0.conv1.weight'][0,0,:,:]
输出为:
array([[ 0.05759342, -0.09511436, -0.02027232],[-0.07455588, -0.799308 , -0.21283598],[ 0.06557069, -0.09653367, -0.01211061]], dtype=float32)
利用如下函数将某一层的所有参数保存到表格中,数据维持卷积核特征大小,如3*3的卷积保存后还是3x3的.
def parm_to_excel(excel_name,key_name,parm):with pd.ExcelWriter(excel_name) as writer:[output_num,input_num,filter_size,_]=parm[key_name].size()for i in range(output_num):for j in range(input_num):data=pd.DataFrame(parm[key_name][i,j,:,:].detach().numpy())#print(data)data.to_excel(writer,index=False,header=True,startrow=i*(filter_size+1),startcol=j*filter_size)
由于权重矩阵中有很多的值非常小,取出固定大小的值,并将全部权重写入excel
counter=1with pd.ExcelWriter('test1.xlsx') as writer: for key in parm_resnet50.keys(): data=parm_resnet50[key].reshape(-1,1) data=data[data>0.001] data=pd.DataFrame(data,columns=[key]) data.to_excel(writer,index=False,startcol=counter) counter+=1
2、获取中间某一层的特性
重写一个函数,将需要输出的层输出即可.
def resnet_cifar(net,input_data): x = net.conv1(input_data) x = net.bn1(x) x = F.relu(x) x = net.layer1(x) x = net.layer2(x) x = net.layer3(x) x = net.layer4[0].conv1(x) #这样就提取了layer4第一块的第一个卷积层的输出 x=x.view(x.shape[0],-1) return xmodel = models.resnet18()x = resnet_cifar(model,input_data)
以上这篇获取Pytorch中间某一层权重或者特征的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
122 在
学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..123 在
Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..原梓番博客 在
在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..博主 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..1111 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
Copyright·© 2019 侯体宗版权所有·
粤ICP备20027696号