侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

PyTorch的深度学习入门教程之构建神经网络

Python  /  管理员 发布于 5年前   182

前言

本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。

Part3:使用PyTorch构建一个神经网络

神经网络可以使用touch.nn来构建。nn依赖于autograd来定义模型,并且对其求导。一个nn.Module包含网络的层(layers),同时forward(input)可以返回output。

这是一个简单的前馈网络。它接受输入,然后一层一层向前传播,最后输出一个结果。

训练神经网络的典型步骤如下:

(1)  定义神经网络,该网络包含一些可以学习的参数(如权重)

(2)  在输入数据集上进行迭代

(3)  使用网络对输入数据进行处理

(4)  计算loss(输出值距离正确值有多远)

(5)  将梯度反向传播到网络参数中

(6)  更新网络的权重,使用简单的更新法则:weight = weight - learning_rate* gradient,即:新的权重=旧的权重-学习率*梯度值。

1 定义网络

我们先定义一个网络:

import torchfrom torch.autograd import Variableimport torch.nn as nnimport torch.nn.functional as Fclass Net(nn.Module):  def __init__(self):    super(Net, self).__init__()    # 1 input image channel, 6 output channels, 5x5 square convolution    # kernel    self.conv1 = nn.Conv2d(1, 6, 5)    self.conv2 = nn.Conv2d(6, 16, 5)    # an affine operation: y = Wx + b    self.fc1 = nn.Linear(16 * 5 * 5, 120)    self.fc2 = nn.Linear(120, 84)    self.fc3 = nn.Linear(84, 10)  def forward(self, x):    # Max pooling over a (2, 2) window    x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))    # If the size is a square you can only specify a single number    x = F.max_pool2d(F.relu(self.conv2(x)), 2)    x = x.view(-1, self.num_flat_features(x))    x = F.relu(self.fc1(x))    x = F.relu(self.fc2(x))    x = self.fc3(x)    return x  def num_flat_features(self, x):    size = x.size()[1:] # all dimensions except the batch dimension    num_features = 1    for s in size:      num_features *= s    return num_featuresnet = Net()print(net)

预期输出:

Net ( (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1)) (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1)) (fc1): Linear (400 ->120) (fc2): Linear (120 ->84) (fc3): Linear (84 ->10))

你只需要定义forward函数,那么backward函数(梯度在此函数中计算)就会利用autograd来自动定义。你可以在forward函数中使用Tensor的任何运算。

学习到的参数可以被net.parameters()返回。

params = list(net.parameters())print(len(params))print(params[0].size()) # conv1's .weight

预期输出:

10

torch.Size([6, 1, 5, 5])

前向计算的输入和输出都是autograd.Variable,注意,这个网络(LeNet)的输入尺寸是32*32。为了在MNIST数据集上使用这个网络,请把图像大小转变为32*32。

input = Variable(torch.randn(1, 1, 32, 32))out = net(input)print(out)

预期输出:

Variable containing:
-0.0796 0.0330 0.0103 0.0250 0.1153 -0.0136 0.0234 0.0881 0.0374 -0.0359
[torch.FloatTensor of size 1x10]

将梯度缓冲区归零,然后使用随机梯度值进行反向传播。

net.zero_grad()out.backward(torch.randn(1, 10))

注意:torch.nn只支持mini-batches. 完整的torch.nn package只支持mini-batch形式的样本作为输入,并且不能只包含一个样本。例如,nn.Conv2d会采用一个4D的Tensor(nSamples* nChannels * Height * Width)。如果你有一个单样本,可以使用input.unsqueeze(0)来添加一个虚假的批量维度。

在继续之前,让我们回顾一下迄今为止所见过的所有类。

概述:

(1)  torch.Tensor――多维数组

(2)  autograd.Variable――包装了一个Tensor,并且记录了应用于其上的运算。与Tensor具有相同的API,同时增加了一些新东西例如backward()。并且有相对于该tensor的梯度值。

(3)  nn.Module――神经网络模块。封装参数的简便方式,对于参数向GPU移动,以及导出、加载等有帮助。

(4)  nn.Parameter――这是一种变量(Variable),当作为一个属性(attribute)分配到一个模块(Module)时,可以自动注册为一个参数(parameter)。

(5)  autograd.Function――执行自动求导运算的前向和反向定义。每一个Variable运算,创建至少一个单独的Function节点,该节点连接到创建了Variable并且编码了它的历史的函数身上。

2 损失函数(Loss Function)

损失函数采用输出值和目标值作为输入参数,来计算输出值距离目标值还有多大差距。在nn package中有很多种不同的损失函数,最简单的一个loss就是nn.MSELoss,它计算输出值和目标值之间的均方差。

例如:

output = net(input)target = Variable(torch.arange(1, 11)) # a dummy target, for examplecriterion = nn.MSELoss()loss = criterion(output, target)print(loss)

现在,从反向看loss,使用.grad_fn属性,你会看到一个计算graph如下:

input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d   -> view -> linear -> relu -> linear -> relu -> linear   -> MSELoss   -> loss

当我们调用loss.backward(),整个的graph关于loss求导,graph中的所有Variables都会有他们自己的.grad变量。

为了理解,我们进行几个反向步骤。

print(loss.grad_fn) # MSELossprint(loss.grad_fn.next_functions[0][0]) # Linearprint(loss.grad_fn.next_functions[0][0].next_functions[0][0]) # ReLU

预期输出:

<torch.autograd.function.MSELossBackwardobjectat0x7fb3c0dcf4f8><torch.autograd.function.AddmmBackwardobjectat0x7fb3c0dcf408><AccumulateGradobjectat0x7fb3c0db79e8>

3 反向传播(Backprop)

可以使用loss.backward()进行误差反向传播。你需要清除已经存在的梯度值,否则梯度将会积累到现有的梯度上。

现在,我们调用loss.backward(),看一看conv1的bias 梯度在backward之前和之后的值。

net.zero_grad()   # zeroes the gradient buffers of all parametersprint('conv1.bias.grad before backward')print(net.conv1.bias.grad)loss.backward()print('conv1.bias.grad after backward')print(net.conv1.bias.grad)

4 更新权重

实践当中最简单的更新法则就是随机梯度下降法( StochasticGradient Descent (SGD))

weight = weight - learning_rate * gradient

执行这个操作的python代码如下:

learning_rate = 0.01for f in net.parameters():  f.data.sub_(f.grad.data * learning_rate)

但是当你使用神经网络的时候,你可能会想要尝试多种不同的更新法则,例如SGD,Nesterov-SGD, Adam, RMSProp等。为了实现此功能,有一个package叫做torch.optim已经实现了这些。使用它也很方便:

import torch.optim as optim# create your optimizeroptimizer = optim.SGD(net.parameters(), lr=0.01)# in your training loop:optimizer.zero_grad()  # zero the gradient buffersoutput = net(input)loss = criterion(output, target)loss.backward()optimizer.step()  # Does the update

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    pyqt5 使用cv2 显示图片,摄像头的实例
    下一条:
    PyTorch的深度学习入门之PyTorch安装和配置
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客