侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

pytorch使用Variable实现线性回归

Python  /  管理员 发布于 5年前   164

本文实例为大家分享了pytorch使用Variable实现线性回归的具体代码,供大家参考,具体内容如下

一、手动计算梯度实现线性回归

#导入相关包import torch as timport matplotlib.pyplot as plt #构造数据def get_fake_data(batch_size = 8): #设置随机种子数,这样每次生成的随机数都是一样的 t.manual_seed(10) #产生随机数据:y = 2*x+3,加上了一些噪声 x = t.rand(batch_size,1) * 20 #randn生成期望为0方差为1的正态分布随机数 y = x * 2 + (1 + t.randn(batch_size,1)) * 3  return x,y #查看生成数据的分布x,y = get_fake_data()plt.scatter(x.squeeze().numpy(),y.squeeze().numpy()) #线性回归 #随机初始化参数w = t.rand(1,1)b = t.zeros(1,1)#学习率lr = 0.001  for i in range(10000): x,y = get_fake_data()  #forward:计算loss y_pred = x.mm(w) + b.expand_as(y)  #均方误差作为损失函数 loss = 0.5 * (y_pred - y)**2  loss = loss.sum()  #backward:手动计算梯度 dloss = 1 dy_pred = dloss * (y_pred - y) dw = x.t().mm(dy_pred) db = dy_pred.sum()  #更新参数 w.sub_(lr * dw) b.sub_(lr * db)  if i%1000 == 0: #画图 plt.scatter(x.squeeze().numpy(),y.squeeze().numpy())  x1 = t.arange(0,20).float().view(-1,1) y1 = x1.mm(w) + b.expand_as(x1) plt.plot(x1.numpy(),y1.numpy()) #predicted plt.show() #plt.pause(0.5) print(w.squeeze(),b.squeeze())

显示的最后一张图如下所示:

二、自动梯度 计算梯度实现线性回归

#导入相关包import torch as tfrom torch.autograd import Variable as Vimport matplotlib.pyplot as plt #构造数据def get_fake_data(batch_size=8): t.manual_seed(10) #设置随机数种子 x = t.rand(batch_size,1) * 20 y = 2 * x +(1 + t.randn(batch_size,1)) * 3 return x,y #查看产生的x,y的分布是什么样的x,y = get_fake_data()plt.scatter(x.squeeze().numpy(),y.squeeze().numpy()) #线性回归 #初始化随机参数w = V(t.rand(1,1),requires_grad=True)b = V(t.rand(1,1),requires_grad=True)lr = 0.001for i in range(8000): x,y = get_fake_data() x,y = V(x),V(y) y_pred = x * w + b loss = 0.5 * (y_pred-y)**2 loss = loss.sum()  #自动计算梯度 loss.backward() #更新参数 w.data.sub_(lr * w.grad.data) b.data.sub_(lr * b.grad.data)  #梯度清零,不清零梯度会累加的 w.grad.data.zero_() b.grad.data.zero_()  if i%1000==0: #predicted x = t.arange(0,20).float().view(-1,1) y = x.mm(w.data) + b.data.expand_as(x) plt.plot(x.numpy(),y.numpy())  #true data x2,y2 = get_fake_data() plt.scatter(x2.numpy(),y2.numpy()) plt.show()print(w.data[0],b.data[0])

显示的最后一张图如下所示:

用autograd实现的线性回归最大的不同点就在于利用autograd不需要手动计算梯度,可以自动微分。这一点不单是在深度在学习中,在许多机器学习的问题中都很有用。另外,需要注意的是每次反向传播之前要记得先把梯度清零,因为autograd求得的梯度是自动累加的。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    PyTorch搭建多项式回归模型(三)
    下一条:
    numpy.where() 用法详解
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客