深入浅出分析LinkedHashMap(图文)
技术  /  管理员 发布于 7年前   154
一、摘要
在集合系列的第一章,咱们了解到,Map的实现类有HashMap、LinkedHashMap、TreeMap、IdentityHashMap、WeakHashMap、Hashtable、Properties等等。
本文主要从数据结构和算法层面,探讨LinkedHashMap的实现。
(推荐学习:Java视频教程)
二、简介
LinkedHashMap可以认为是HashMap+LinkedList,它既使用HashMap操作数据结构,又使用LinkedList维护插入元素的先后顺序,内部采用双向链表(doubly-linked list)的形式将所有元素( entry )连接起来。
LinkedHashMap继承了HashMap,允许放入key为null的元素,也允许插入value为null的元素。从名字上可以看出该容器是LinkedList和HashMap的混合体,也就是说它同时满足HashMap和LinkedList的某些特性,可将LinkedHashMap看作采用Linked list增强的HashMap。
打开 LinkedHashMap 源码,可以看到主要三个核心属性:
public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V>{ /**双向链表的头节点*/ transient LinkedHashMap.Entry<K,V> head; /**双向链表的尾节点*/ transient LinkedHashMap.Entry<K,V> tail; /** * 1、如果accessOrder为true的话,则会把访问过的元素放在链表后面,放置顺序是访问的顺序 * 2、如果accessOrder为false的话,则按插入顺序来遍历 */ final boolean accessOrder;}
LinkedHashMap 在初始化阶段,默认按插入顺序来遍历
public LinkedHashMap() { super(); accessOrder = false;}
LinkedHashMap 采用的 Hash 算法和 HashMap 相同,不同的是,它重新定义了数组中保存的元素Entry,该Entry除了保存当前对象的引用外,还保存了其上一个元素before和下一个元素after的引用,从而在哈希表的基础上又构成了双向链接列表。
源码如下:
static class Entry<K,V> extends HashMap.Node<K,V> { //before指的是链表前驱节点,after指的是链表后驱节点 Entry<K,V> before, after; Entry(int hash, K key, V value, Node<K,V> next) {super(hash, key, value, next); }}
可以直观的看出,双向链表头部插入的数据为链表的入口,迭代器遍历方向是从链表的头部开始到链表尾部结束。
除了可以保迭代历顺序,这种结构还有一个好处:迭代LinkedHashMap时不需要像HashMap那样遍历整个table,而只需要直接遍历header指向的双向链表即可,也就是说LinkedHashMap的迭代时间就只跟entry的个数相关,而跟table的大小无关。
三、常用方法介绍
3.1、get方法
get方法根据指定的key值返回对应的value。该方法跟HashMap.get()方法的流程几乎完全一样,默认按照插入顺序遍历。
public V get(Object key) { Node<K,V> e; if ((e = getNode(hash(key), key)) == null)return null; if (accessOrder)afterNodeAccess(e); return e.value;}
如果accessOrder为true的话,会把访问过的元素放在链表后面,放置顺序是访问的顺序
void afterNodeAccess(Node<K,V> e) { // move node to last LinkedHashMap.Entry<K,V> last; if (accessOrder && (last = tail) != e) {LinkedHashMap.Entry<K,V> p = (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;p.after = null;if (b == null) head = a;else b.after = a;if (a != null) a.before = b;else last = b;if (last == null) head = p;else { p.before = last; last.after = p;}tail = p;++modCount; }}
测试用例:
public static void main(String[] args) { //accessOrder默认为false Map<String, String> accessOrderFalse = new LinkedHashMap<>(); accessOrderFalse.put("1","1"); accessOrderFalse.put("2","2"); accessOrderFalse.put("3","3"); accessOrderFalse.put("4","4"); System.out.println("acessOrderFalse:"+accessOrderFalse.toString()); //accessOrder设置为true Map<String, String> accessOrderTrue = new LinkedHashMap<>(16, 0.75f, true); accessOrderTrue.put("1","1"); accessOrderTrue.put("2","2"); accessOrderTrue.put("3","3"); accessOrderTrue.put("4","4"); accessOrderTrue.get("2");//获取键2 accessOrderTrue.get("3");//获取键3 System.out.println("accessOrderTrue:"+accessOrderTrue.toString());}
输出结果:
acessOrderFalse:{1=1, 2=2, 3=3, 4=4}accessOrderTrue:{1=1, 4=4, 2=2, 3=3}
3.2、put方法
put(K key, V value)方法是将指定的key, value对添加到map里。该方法首先会调用HashMap的插入方法,同样对map做一次查找,看是否包含该元素,如果已经包含则直接返回,查找过程类似于get()方法;如果没有找到,将元素插入集合。
/**HashMap 中实现*/public V put(K key, V value) { return putVal(hash(key), key, value, false, true);}final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0)n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null)tab[i] = newNode(hash, key, value, null); else {Node<K,V> e; K k;if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p;else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) {p.next = newNode(hash, key, value, null);if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash);break; } if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))break; p = e; }}if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue;} } ++modCount; if (++size > threshold)resize(); afterNodeInsertion(evict); return null;}
LinkedHashMap 中覆写的方法
// LinkedHashMap 中覆写Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) { LinkedHashMap.Entry<K,V> p = new LinkedHashMap.Entry<K,V>(hash, key, value, e); // 将 Entry 接在双向链表的尾部 linkNodeLast(p); return p;}private void linkNodeLast(LinkedHashMap.Entry<K,V> p) { LinkedHashMap.Entry<K,V> last = tail; tail = p; // last 为 null,表明链表还未建立 if (last == null) head = p; else { // 将新节点 p 接在链表尾部 p.before = last; last.after = p; }}
3.3、remove方法
remove(Object key)的作用是删除key值对应的entry,该方法实现逻辑主要以HashMap为主,首先找到key值对应的entry,然后删除该entry(修改链表的相应引用),查找过程跟get()方法类似,最后会调用 LinkedHashMap 中覆写的方法,将其删除!
/**HashMap 中实现*/public V remove(Object key) { Node<K,V> e; return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value;}final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) { Node<K,V>[] tab; Node<K,V> p; int n, index; if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) { Node<K,V> node = null, e; K k; V v; if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))node = p; else if ((e = p.next) != null) {if (p instanceof TreeNode) {...}else { // 遍历单链表,寻找要删除的节点,并赋值给 node 变量 do { if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k)))) {node = e;break; } p = e; } while ((e = e.next) != null);} } if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) {if (node instanceof TreeNode) {...}// 将要删除的节点从单链表中移除else if (node == p) tab[index] = node.next;else p.next = node.next;++modCount;--size;afterNodeRemoval(node); // 调用删除回调方法进行后续操作return node; } } return null;}
LinkedHashMap 中覆写的 afterNodeRemoval 方法
void afterNodeRemoval(Node<K,V> e) { // unlink LinkedHashMap.Entry<K,V> p = (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after; // 将 p 节点的前驱后后继引用置空 p.before = p.after = null; // b 为 null,表明 p 是头节点 if (b == null) head = a; else b.after = a; // a 为 null,表明 p 是尾节点 if (a == null) tail = b; else a.before = b;}
四、总结
LinkedHashMap 继承自 HashMap,所有大部分功能特性基本相同,二者唯一的区别是 LinkedHashMap 在HashMap的基础上,采用双向链表(doubly-linked list)的形式将所有 entry 连接起来,这样是为保证元素的迭代顺序跟插入顺序相同。
主体部分跟HashMap完全一样,多了header指向双向链表的头部,tail指向双向链表的尾部,默认双向链表的迭代顺序就是entry的插入顺序。
本文来自,java教程栏目,欢迎学习!
以上就是深入浅出分析LinkedHashMap(图文)的详细内容,更多请关注其它相关文章!
122 在
学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..123 在
Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..原梓番博客 在
在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..博主 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..1111 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
Copyright·© 2019 侯体宗版权所有·
粤ICP备20027696号