tensorflow 只恢复部分模型参数的实例
技术  /  管理员 发布于 7年前   429
我就废话不多说了,直接上代码吧!
import tensorflow as tfdef model_1(): with tf.variable_scope("var_a"): a = tf.Variable(initial_value=[1, 2, 3], name="a") vars = [var for var in tf.trainable_variables() if var.name.startswith("var_a")] print(len(vars)) return varsdef model_2(): vars1 = model_1() with tf.variable_scope("var_b"): a = tf.Variable(initial_value=[1, 2, 3], name="a") vars2 = [var for var in tf.trainable_variables() if var.name.startswith("var")] print(len(vars2)) return vars1def pretrain_model1(): print("-------- model 1 ------") vars = model_1() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() saver.save(sess, "./model.ckpt")def train_model2(): print("-------- model 2 ------") model1_vars = model_2() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(var_list=model1_vars) saver.restore(sess, "./model.ckpt") vars = sess.run([model1_vars]) for var in vars: print(var)step = 2if step == 1: pretrain_model1()else: train_model2()
以上这篇tensorflow 只恢复部分模型参数的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
122 在
学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..123 在
Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..原梓番博客 在
在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..博主 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..1111 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
Copyright·© 2019 侯体宗版权所有·
粤ICP备20027696号