Pandas中Series和DataFrame的索引实现
技术  /  管理员 发布于 7年前   124
正文
在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引。比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字。
使用下标索引的时候下标总是从0开始的,而且索引值总是数字。而使用关键字进行索引,关键字是key里面的值,既可以是数字,也可以是字符串等。
Series对象介绍:
Series对象是由索引index和值values组成的,一个index对应一个value。其中index是pandas中的Index对象。values是numpy中的数组对象。
import pandas as pds1 = pd.Series([2,3,4,5], index=['a', 'b', 'c', 'd'])print(s1)结果:a 2b 3c 4d 5dtype: int64print(s1.index)结果:Index(['a', 'b', 'c', 'd'], dtype='object')print(s1.values)结果:[2 3 4 5]
如何对Series对象进行索引?
1:使用index中的值进行索引
print(s1['a'])结果:2print(s1[['a','d']])结果:a 2d 5dtype: int64print(s1['b':'d'])结果(注意,切片索引保存最后一个值):b 3c 4d 5dtype: int64
2:使用下标进行索引
print(s1[0])结果:2print(s1[[0,3]])结果:a 2d 5dtype: int64print(s1[1:3])结果(注意:这里和上面不同的是不保存最后一个值,与正常索引相同):b 3c 4dtype: int64
3:特殊情况:
上面的index为字符串,假如index为数字,这个时候进行索引是按照index值进行还是按照下标进行?
s1 = pd.Series([2,3,4,5], index=[1,2,3,4])print(s1[2])结果:3print(s1[0]) 会报错print(s1[[2,4]])结果:2 34 5dtype: int64print(s1[1:3])结果:2 33 4dtype: int64
可以看出来,当index为整数的时候,那么前两种选择是使用index的值进行索引, 而后一种切片选择使用的是下标进行索引。
4:使用布尔Series进行索引
使用布尔Series进行索引的时候,其实是要求布尔Series和我们的索引对象有相同的index。
s1 = pd.Series([2,3,4,5], index=['a', 'b', 'c', 'd']print(s1 > 3)结果(这是一个bool Series):a Falseb Falsec Trued Truedtype: boolprint(s1[s1 > 3])结果(只需要把bool Series 传入Series就可以实现索引):c 4d 5dtype: int64
5:使用Index对象来进行索引
使用Index对象进行索引的时候,和使用值索引没有本质的区别。因为Index里面也存入了很多值,可以把Index看做一个list。
DataFrame对象介绍:
DataFrame对象是一个由行列组成的表。DataFrame中行由columns组成,列由index组成,它们都是Index对象。它的值还是numpy数组。
data = {'name':['ming', 'hong', 'gang', 'tian'], 'age':[12, 13, 14, 20], 'score':[80.3, 88.2, 90, 99.9]}df1 = pd.DataFrame(data)print(df1.index)结果:RangeIndex(start=0, stop=4, step=1)print(df1.columns)结果:Index(['age', 'name', 'score'], dtype='object')print(df1.values)结果:[[12 'ming' 80.3] [13 'hong' 88.2] [14 'gang' 90.0] [20 'tian' 99.9]]
如何对DataFrame对象进行索引
1:使用columns的值对列进行索引
直接使用columns中的值进行索引,得到的是一列或者是多列的值
print(df1['name'])结果:0 ming1 hong2 gang3 tianName: name, dtype: objectprint(df1[['name','age']])结果:name age0 ming 121 hong 132 gang 143 tian 20注意:不可以直接使用下标对列进行索引,除非该columns当中包含该值。如下面的操作是错误的
print(df1[0])
结果: 错误
2:切片或者布尔Series对行进行索引
使用切片索引,或者布尔类型Series进行索引:
print(df1[0:3])使用切片进行选择,结果:age name score0 12 ming 80.31 13 hong 88.22 14 gang 90.0print(df1[ df1['age'] > 13 ])使用布尔类型Series进行索引,其实还是要求布尔Series和DataFrame有相同的index,结果:age name score2 14 gang 90.03 20 tian 99.9
3:使用loc和iloc进行索引
本质上loc是用index和columns当中的值进行索引,而iloc是不理会index和columns当中的值的,永远都是用从0开始的下标进行索引。所以当你搞懂这句话的时候,下面的索引就会变得非常简单:
print(df1.loc[3])结果:name hongscore 88.2Name: 3, dtype: objectprint(df1.loc[:,'age'])结果:1 123 134 145 20Name: age, dtype: int64print(df1.iloc[3])结果:age 20name tianscore 99.9Name: 5, dtype: objectprint(df1.iloc[:,1])结果:1 ming3 hong4 gang5 tianName: name, dtype: object
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
122 在
学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..123 在
Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..原梓番博客 在
在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..博主 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..1111 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
Copyright·© 2019 侯体宗版权所有·
粤ICP备20027696号