侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

kaggle+mnist实现手写字体识别

技术  /  管理员 发布于 7年前   169

现在的许多手写字体识别代码都是基于已有的mnist手写字体数据集进行的,而kaggle需要用到网站上给出的数据集并生成测试集的输出用于提交。这里选择keras搭建卷积网络进行识别,可以直接生成测试集的结果,最终结果识别率大概97%左右的样子。

# -*- coding: utf-8 -*-"""Created on Tue Jun 6 19:07:10 2017@author: Administrator"""from keras.models import Sequentialfrom keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.utils import np_utilsimport osimport pandas as pdimport numpy as npfrom tensorflow.examples.tutorials.mnist import input_datafrom keras import backend as Kimport tensorflow as tf# 全局变量 batch_size = 100 nb_classes = 10 epochs = 20# input image dimensions img_rows, img_cols = 28, 28 # number of convolutional filters to use nb_filters = 32 # size of pooling area for max pooling pool_size = (2, 2) # convolution kernel size kernel_size = (3, 3) inputfile='F:/data/kaggle/mnist/train.csv'inputfile2= 'F:/data/kaggle/mnist/test.csv'outputfile= 'F:/data/kaggle/mnist/test_label.csv'pwd = os.getcwd()os.chdir(os.path.dirname(inputfile)) train= pd.read_csv(os.path.basename(inputfile)) #从训练数据文件读取数据os.chdir(pwd)pwd = os.getcwd()os.chdir(os.path.dirname(inputfile)) test= pd.read_csv(os.path.basename(inputfile2)) #从测试数据文件读取数据os.chdir(pwd)x_train=train.iloc[:,1:785] #得到特征数据y_train=train['label']y_train = np_utils.to_categorical(y_train, 10)mnist=input_data.read_data_sets("MNIST_data/",one_hot=True) #导入数据x_test=mnist.test.imagesy_test=mnist.test.labels# 根据不同的backend定下不同的格式 if K.image_dim_ordering() == 'th':  x_train=np.array(x_train) test=np.array(test) x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)  x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)  input_shape = (1, img_rows, img_cols)  test = test.reshape(test.shape[0], 1, img_rows, img_cols) else:  x_train=np.array(x_train) test=np.array(test) x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)  X_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)  test = test.reshape(test.shape[0], img_rows, img_cols, 1)  input_shape = (img_rows, img_cols, 1) x_train = x_train.astype('float32') x_test = X_test.astype('float32') test = test.astype('float32') x_train /= 255 X_test /= 255test/=255 print('X_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print(test.shape[0], 'testOuput samples') model=Sequential()#model initialmodel.add(Convolution2D(nb_filters, (kernel_size[0], kernel_size[1]),       padding='same',       input_shape=input_shape)) # 卷积层1 model.add(Activation('relu')) #激活层 model.add(Convolution2D(nb_filters, (kernel_size[0], kernel_size[1]))) #卷积层2 model.add(Activation('relu')) #激活层 model.add(MaxPooling2D(pool_size=pool_size)) #池化层 model.add(Dropout(0.25)) #神经元随机失活 model.add(Flatten()) #拉成一维数据 model.add(Dense(128)) #全连接层1 model.add(Activation('relu')) #激活层 model.add(Dropout(0.5)) #随机失活 model.add(Dense(nb_classes)) #全连接层2 model.add(Activation('softmax')) #Softmax评分 #编译模型 model.compile(loss='categorical_crossentropy',     optimizer='adadelta',     metrics=['accuracy']) #训练模型 model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,verbose=1) model.predict(x_test)#评估模型 score = model.evaluate(x_test, y_test, verbose=0) print('Test score:', score[0]) print('Test accuracy:', score[1]) y_test=model.predict(test)sess=tf.InteractiveSession()y_test=sess.run(tf.arg_max(y_test,1))y_test=pd.DataFrame(y_test)y_test.to_csv(outputfile)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    tensorflow 恢复指定层与不同层指定不同学习率的方法
    下一条:
    解决tensorflow模型参数保存和加载的问题
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 2024.07.09日OpenAI将终止对中国等国家和地区API服务(0个评论)
    • 2024/6/9最新免费公益节点SSR/V2ray/Shadowrocket/Clash节点分享|科学上网|免费梯子(1个评论)
    • 国外服务器实现api.openai.com反代nginx配置(0个评论)
    • 2024/4/28最新免费公益节点SSR/V2ray/Shadowrocket/Clash节点分享|科学上网|免费梯子(1个评论)
    • 近期文章
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2017-07
    • 2017-08
    • 2017-09
    • 2018-01
    • 2018-07
    • 2018-08
    • 2018-09
    • 2018-12
    • 2019-01
    • 2019-02
    • 2019-03
    • 2019-04
    • 2019-05
    • 2019-06
    • 2019-07
    • 2019-08
    • 2019-09
    • 2019-10
    • 2019-11
    • 2019-12
    • 2020-01
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2020-07
    • 2020-08
    • 2020-09
    • 2020-10
    • 2020-11
    • 2021-04
    • 2021-05
    • 2021-06
    • 2021-07
    • 2021-08
    • 2021-09
    • 2021-10
    • 2021-12
    • 2022-01
    • 2022-02
    • 2022-03
    • 2022-04
    • 2022-05
    • 2022-06
    • 2022-07
    • 2022-08
    • 2022-09
    • 2022-10
    • 2022-11
    • 2022-12
    • 2023-01
    • 2023-02
    • 2023-03
    • 2023-04
    • 2023-05
    • 2023-06
    • 2023-07
    • 2023-08
    • 2023-09
    • 2023-10
    • 2023-12
    • 2024-02
    • 2024-04
    • 2024-05
    • 2024-06
    • 2025-02
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客