侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

Tensorflow使用tfrecord输入数据格式

技术  /  管理员 发布于 7年前   138

Tensorflow 提供了一种统一的格式来存储数据,这个格式就是TFRecord,上一篇文章中所提到的方法当数据的来源更复杂,每个样例中的信息更丰富的时候就很难有效的记录输入数据中的信息了,于是Tensorflow提供了TFRecord来统一存储数据,接下来我们就来介绍如何使用TFRecord来同意输入数据的格式。

1. TFRecord格式介绍

TFRecord文件中的数据是通过tf.train.Example Protocol Buffer的格式存储的,下面是tf.train.Example的定义

message Example { Features features = 1;};message Features{ map<string,Feature> featrue = 1;};message Feature{  oneof kind{    BytesList bytes_list = 1;    FloatList float_list = 2;    Int64List int64_list = 3;  }};

从上述代码可以看到,ft.train.Example 的数据结构相对简洁。tf.train.Example中包含了一个从属性名称到取值的字典,其中属性名称为一个字符串,属性的取值可以为字符串(BytesList ),实数列表(FloatList )或整数列表(Int64List )。例如我们可以将解码前的图片作为字符串,图像对应的类别标号作为整数列表。

2. 将自己的数据转化为TFRecord格式

准备数据

在上一篇中,我们为了像伟大的MNIST致敬,所以选择图像的前缀来进行不同类别的分类依据,但是大多数的情况下,在进行分类任务的过程中,不同的类别都会放在不同的文件夹下,而且类别的个数往往浮动性又很大,所以针对这样的情况,我们现在利用不同类别在不同文件夹中的图像来生成TFRecord.

我们在Iris&Contact这个文件夹下有两个文件夹,分别为iris,contact。对于每个文件夹中存放的是对应的图片

转换数据

数据准备好以后,就开始准备生成TFRecord,具体代码如下:

import os import tensorflow as tf from PIL import Image import matplotlib.pyplot as plt cwd='/home/ruyiwei/Documents/Iris&Contact/'classes={'iris','contact'} writer= tf.python_io.TFRecordWriter("iris_contact.tfrecords") for index,name in enumerate(classes):  class_path=cwd+name+'/'  for img_name in os.listdir(class_path):     img_path=class_path+img_name     img=Image.open(img_path)    img= img.resize((512,80))    img_raw=img.tobytes()    #plt.imshow(img) # if you want to check you image,please delete '#'    #plt.show()    example = tf.train.Example(features=tf.train.Features(feature={      "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),      'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))    }))     writer.write(example.SerializeToString()) writer.close()

3. Tensorflow从TFRecord中读取数据

def read_and_decode(filename): # read iris_contact.tfrecords  filename_queue = tf.train.string_input_producer([filename])# create a queue  reader = tf.TFRecordReader()  _, serialized_example = reader.read(filename_queue)#return file_name and file  features = tf.parse_single_example(serialized_example,        features={          'label': tf.FixedLenFeature([], tf.int64),          'img_raw' : tf.FixedLenFeature([], tf.string),        })#return image and label  img = tf.decode_raw(features['img_raw'], tf.uint8)  img = tf.reshape(img, [512, 80, 3]) #reshape image to 512*80*3  img = tf.cast(img, tf.float32) * (1. / 255) - 0.5 #throw img tensor  label = tf.cast(features['label'], tf.int32) #throw label tensor  return img, label

4. 将TFRecord中的数据保存为图片

filename_queue = tf.train.string_input_producer(["iris_contact.tfrecords"]) reader = tf.TFRecordReader()_, serialized_example = reader.read(filename_queue)  #return file and file_namefeatures = tf.parse_single_example(serialized_example,      features={        'label': tf.FixedLenFeature([], tf.int64),        'img_raw' : tf.FixedLenFeature([], tf.string),      }) image = tf.decode_raw(features['img_raw'], tf.uint8)image = tf.reshape(image, [512, 80, 3])label = tf.cast(features['label'], tf.int32)with tf.Session() as sess:   init_op = tf.initialize_all_variables()  sess.run(init_op)  coord=tf.train.Coordinator()  threads= tf.train.start_queue_runners(coord=coord)  for i in range(20):    example, l = sess.run([image,label])#take out image and label    img=Image.fromarray(example, 'RGB')    img.save(cwd+str(i)+'_''Label_'+str(l)+'.jpg')#save image    print(example, l)  coord.request_stop()  coord.join(threads)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    Tensorflow中使用tfrecord方式读取数据的方法
    下一条:
    Tensorflow 训练自己的数据集将数据直接导入到内存
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 2024.07.09日OpenAI将终止对中国等国家和地区API服务(0个评论)
    • 2024/6/9最新免费公益节点SSR/V2ray/Shadowrocket/Clash节点分享|科学上网|免费梯子(0个评论)
    • 国外服务器实现api.openai.com反代nginx配置(0个评论)
    • 2024/4/28最新免费公益节点SSR/V2ray/Shadowrocket/Clash节点分享|科学上网|免费梯子(0个评论)
    • 近期文章
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • PHP 8.4 Alpha 1现已发布!(0个评论)
    • Laravel 11.15版本发布 - Eloquent Builder中添加的泛型(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2017-07
    • 2017-08
    • 2017-09
    • 2018-01
    • 2018-07
    • 2018-08
    • 2018-09
    • 2018-12
    • 2019-01
    • 2019-02
    • 2019-03
    • 2019-04
    • 2019-05
    • 2019-06
    • 2019-07
    • 2019-08
    • 2019-09
    • 2019-10
    • 2019-11
    • 2019-12
    • 2020-01
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2020-07
    • 2020-08
    • 2020-09
    • 2020-10
    • 2020-11
    • 2021-04
    • 2021-05
    • 2021-06
    • 2021-07
    • 2021-08
    • 2021-09
    • 2021-10
    • 2021-12
    • 2022-01
    • 2022-02
    • 2022-03
    • 2022-04
    • 2022-05
    • 2022-06
    • 2022-07
    • 2022-08
    • 2022-09
    • 2022-10
    • 2022-11
    • 2022-12
    • 2023-01
    • 2023-02
    • 2023-03
    • 2023-04
    • 2023-05
    • 2023-06
    • 2023-07
    • 2023-08
    • 2023-09
    • 2023-10
    • 2023-12
    • 2024-02
    • 2024-04
    • 2024-05
    • 2024-06
    • 2025-02
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客