侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

TensorFlow实现非线性支持向量机的实现方法

技术  /  管理员 发布于 7年前   130

这里将加载iris数据集,创建一个山鸢尾花(I.setosa)的分类器。

# Nonlinear SVM Example#----------------------------------## This function wll illustrate how to# implement the gaussian kernel on# the iris dataset.## Gaussian Kernel:# K(x1, x2) = exp(-gamma * abs(x1 - x2)^2)import matplotlib.pyplot as pltimport numpy as npimport tensorflow as tffrom sklearn import datasetsfrom tensorflow.python.framework import opsops.reset_default_graph()# Create graphsess = tf.Session()# Load the data# iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]# 加载iris数据集,抽取花萼长度和花瓣宽度,分割每类的x_vals值和y_vals值iris = datasets.load_iris()x_vals = np.array([[x[0], x[3]] for x in iris.data])y_vals = np.array([1 if y==0 else -1 for y in iris.target])class1_x = [x[0] for i,x in enumerate(x_vals) if y_vals[i]==1]class1_y = [x[1] for i,x in enumerate(x_vals) if y_vals[i]==1]class2_x = [x[0] for i,x in enumerate(x_vals) if y_vals[i]==-1]class2_y = [x[1] for i,x in enumerate(x_vals) if y_vals[i]==-1]# Declare batch size# 声明批量大小(偏向于更大批量大小)batch_size = 150# Initialize placeholdersx_data = tf.placeholder(shape=[None, 2], dtype=tf.float32)y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)prediction_grid = tf.placeholder(shape=[None, 2], dtype=tf.float32)# Create variables for svmb = tf.Variable(tf.random_normal(shape=[1,batch_size]))# Gaussian (RBF) kernel# 声明批量大小(偏向于更大批量大小)gamma = tf.constant(-25.0)sq_dists = tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data)))my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists)))# Compute SVM Modelfirst_term = tf.reduce_sum(b)b_vec_cross = tf.matmul(tf.transpose(b), b)y_target_cross = tf.matmul(y_target, tf.transpose(y_target))second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)))loss = tf.negative(tf.subtract(first_term, second_term))# Gaussian (RBF) prediction kernel# 创建一个预测核函数rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1),[-1,1])rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1),[-1,1])pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB))pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist)))# 声明一个准确度函数,其为正确分类的数据点的百分比prediction_output = tf.matmul(tf.multiply(tf.transpose(y_target),b), pred_kernel)prediction = tf.sign(prediction_output-tf.reduce_mean(prediction_output))accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(prediction), tf.squeeze(y_target)), tf.float32))# Declare optimizermy_opt = tf.train.GradientDescentOptimizer(0.01)train_step = my_opt.minimize(loss)# Initialize variablesinit = tf.global_variables_initializer()sess.run(init)# Training looploss_vec = []batch_accuracy = []for i in range(300):  rand_index = np.random.choice(len(x_vals), size=batch_size)  rand_x = x_vals[rand_index]  rand_y = np.transpose([y_vals[rand_index]])  sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})  temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})  loss_vec.append(temp_loss)  acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x,           y_target: rand_y,           prediction_grid:rand_x})  batch_accuracy.append(acc_temp)  if (i+1)%75==0:    print('Step #' + str(i+1))    print('Loss = ' + str(temp_loss))# Create a mesh to plot points in# 为了绘制决策边界(Decision Boundary),我们创建一个数据点(x,y)的网格,评估预测函数x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),           np.arange(y_min, y_max, 0.02))grid_points = np.c_[xx.ravel(), yy.ravel()][grid_predictions] = sess.run(prediction, feed_dict={x_data: rand_x,  y_target: rand_y,  prediction_grid: grid_points})grid_predictions = grid_predictions.reshape(xx.shape)# Plot points and gridplt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8)plt.plot(class1_x, class1_y, 'ro', label='I. setosa')plt.plot(class2_x, class2_y, 'kx', label='Non setosa')plt.title('Gaussian SVM Results on Iris Data')plt.xlabel('Pedal Length')plt.ylabel('Sepal Width')plt.legend(loc='lower right')plt.ylim([-0.5, 3.0])plt.xlim([3.5, 8.5])plt.show()# Plot batch accuracyplt.plot(batch_accuracy, 'k-', label='Accuracy')plt.title('Batch Accuracy')plt.xlabel('Generation')plt.ylabel('Accuracy')plt.legend(loc='lower right')plt.show()# Plot loss over timeplt.plot(loss_vec, 'k-')plt.title('Loss per Generation')plt.xlabel('Generation')plt.ylabel('Loss')plt.show()

输出:

Step #75
Loss = -110.332
Step #150
Loss = -222.832
Step #225
Loss = -335.332
Step #300
Loss = -447.832

四种不同的gamma值(1,10,25,100):

 

 

 

 

不同gamma值的山鸢尾花(I.setosa)的分类器结果图,采用高斯核函数的SVM。

gamma值越大,每个数据点对分类边界的影响就越大。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    浅谈Tensorflow模型的保存与恢复加载
    下一条:
    用TensorFlow实现多类支持向量机的示例代码
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 2024.07.09日OpenAI将终止对中国等国家和地区API服务(0个评论)
    • 2024/6/9最新免费公益节点SSR/V2ray/Shadowrocket/Clash节点分享|科学上网|免费梯子(1个评论)
    • 国外服务器实现api.openai.com反代nginx配置(0个评论)
    • 2024/4/28最新免费公益节点SSR/V2ray/Shadowrocket/Clash节点分享|科学上网|免费梯子(1个评论)
    • 近期文章
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2017-07
    • 2017-08
    • 2017-09
    • 2018-01
    • 2018-07
    • 2018-08
    • 2018-09
    • 2018-12
    • 2019-01
    • 2019-02
    • 2019-03
    • 2019-04
    • 2019-05
    • 2019-06
    • 2019-07
    • 2019-08
    • 2019-09
    • 2019-10
    • 2019-11
    • 2019-12
    • 2020-01
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2020-07
    • 2020-08
    • 2020-09
    • 2020-10
    • 2020-11
    • 2021-04
    • 2021-05
    • 2021-06
    • 2021-07
    • 2021-08
    • 2021-09
    • 2021-10
    • 2021-12
    • 2022-01
    • 2022-02
    • 2022-03
    • 2022-04
    • 2022-05
    • 2022-06
    • 2022-07
    • 2022-08
    • 2022-09
    • 2022-10
    • 2022-11
    • 2022-12
    • 2023-01
    • 2023-02
    • 2023-03
    • 2023-04
    • 2023-05
    • 2023-06
    • 2023-07
    • 2023-08
    • 2023-09
    • 2023-10
    • 2023-12
    • 2024-02
    • 2024-04
    • 2024-05
    • 2024-06
    • 2025-02
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客