浅谈pandas中shift和diff函数关系
技术 / 管理员 发布于 7年前 441
通过?pandas.DataFrame.shift命令查看帮助文档
Signature: pandas.DataFrame.shift(self, periods=1, freq=None, axis=0) Docstring: Shift index by desired number of periods with an optional time freq
该函数主要的功能就是使数据框中的数据移动,若freq=None时,根据axis的设置,行索引数据保持不变,列索引数据可以在行上上下移动或在列上左右移动;若行索引为时间序列,则可以设置freq参数,根据periods和freq参数值组合,使行索引每次发生periods*freq偏移量滚动,列索引数据不会移动
① 对于DataFrame的行索引是日期型,行索引发生移动,列索引数据不变
In [2]: import pandas as pd ...: import numpy as np ...: df = pd.DataFrame(np.arange(24).reshape(6,4),index=pd.date_range(start= ...: '20170101',periods=6),columns=['A','B','C','D']) ...: df ...:Out[2]: A B C D2017-01-01 0 1 2 32017-01-02 4 5 6 72017-01-03 8 9 10 112017-01-04 12 13 14 152017-01-05 16 17 18 192017-01-06 20 21 22 23In [3]: df.shift(2,axis=0,freq='2D')Out[3]: A B C D2017-01-05 0 1 2 32017-01-06 4 5 6 72017-01-07 8 9 10 112017-01-08 12 13 14 152017-01-09 16 17 18 192017-01-10 20 21 22 23In [4]: df.shift(2,axis=1,freq='2D')Out[4]: A B C D2017-01-05 0 1 2 32017-01-06 4 5 6 72017-01-07 8 9 10 112017-01-08 12 13 14 152017-01-09 16 17 18 192017-01-10 20 21 22 23In [5]: df.shift(2,freq='2D')Out[5]: A B C D2017-01-05 0 1 2 32017-01-06 4 5 6 72017-01-07 8 9 10 112017-01-08 12 13 14 152017-01-09 16 17 18 192017-01-10 20 21 22 23
结论:对于时间索引而言,shift使时间索引发生移动,其他数据保存原样,且axis设置没有任何影响
② 对于DataFrame行索引为非时间序列,行索引数据保持不变,列索引数据发生移动
In [6]: import pandas as pd ...: import numpy as np ...: df = pd.DataFrame(np.arange(24).reshape(6,4),index=['r1','r2','r3','r4' ...: ,'r5','r6'],columns=['A','B','C','D']) ...: df ...:Out[6]: A B C Dr1 0 1 2 3r2 4 5 6 7r3 8 9 10 11r4 12 13 14 15r5 16 17 18 19r6 20 21 22 23In [7]: df.shift(periods=2,axis=0)Out[7]: A B C Dr1 NaN NaN NaN NaNr2 NaN NaN NaN NaNr3 0.0 1.0 2.0 3.0r4 4.0 5.0 6.0 7.0r5 8.0 9.0 10.0 11.0r6 12.0 13.0 14.0 15.0In [8]: df.shift(periods=-2,axis=0)Out[8]: A B C Dr1 8.0 9.0 10.0 11.0r2 12.0 13.0 14.0 15.0r3 16.0 17.0 18.0 19.0r4 20.0 21.0 22.0 23.0r5 NaN NaN NaN NaNr6 NaN NaN NaN NaNIn [9]: df.shift(periods=2,axis=1)Out[9]: A B C Dr1 NaN NaN 0.0 1.0r2 NaN NaN 4.0 5.0r3 NaN NaN 8.0 9.0r4 NaN NaN 12.0 13.0r5 NaN NaN 16.0 17.0r6 NaN NaN 20.0 21.0In [10]: df.shift(periods=-2,axis=1)Out[10]: A B C Dr1 2.0 3.0 NaN NaNr2 6.0 7.0 NaN NaNr3 10.0 11.0 NaN NaNr4 14.0 15.0 NaN NaNr5 18.0 19.0 NaN NaNr6 22.0 23.0 NaN NaN
通过?pandas.DataFrame.diff命令查看帮助文档,发现和shift函数形式一样
Signature: pd.DataFrame.diff(self, periods=1, axis=0) Docstring: 1st discrete difference of object
下面看看diff函数和shift函数之间的关系
In [13]: df.diff(periods=2,axis=0)Out[13]: A B C Dr1 NaN NaN NaN NaNr2 NaN NaN NaN NaNr3 8.0 8.0 8.0 8.0r4 8.0 8.0 8.0 8.0r5 8.0 8.0 8.0 8.0r6 8.0 8.0 8.0 8.0In [14]: df -df.diff(periods=2,axis=0)Out[14]: A B C Dr1 NaN NaN NaN NaNr2 NaN NaN NaN NaNr3 0.0 1.0 2.0 3.0r4 4.0 5.0 6.0 7.0r5 8.0 9.0 10.0 11.0r6 12.0 13.0 14.0 15.0In [15]: df.shift(periods=2,axis=0)Out[15]: A B C Dr1 NaN NaN NaN NaNr2 NaN NaN NaN NaNr3 0.0 1.0 2.0 3.0r4 4.0 5.0 6.0 7.0r5 8.0 9.0 10.0 11.0r6 12.0 13.0 14.0 15.0
以上这篇浅谈pandas中shift和diff函数关系就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
122 在
学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..123 在
Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..原梓番博客 在
在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..博主 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..1111 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
Copyright·© 2019 侯体宗版权所有·
粤ICP备20027696号