侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

运用TensorFlow进行简单实现线性回归、梯度下降示例

技术  /  管理员 发布于 7年前   136

线性回归属于监督学习,因此方法和监督学习应该是一样的,先给定一个训练集,根据这个训练集学习出一个线性函数,然后测试这个函数训练的好不好(即此函数是否足够拟合训练集数据),挑选出最好的函数(cost function最小)即可。

单变量线性回归:

a) 因为是线性回归,所以学习到的函数为线性函数,即直线函数;

b) 因为是单变量,因此只有一个x。

我们能够给出单变量线性回归的模型:

我们常称x为feature,h(x)为hypothesis。

上面介绍的方法中,我们肯定有一个疑问,怎样能够看出线性函数拟合的好不好呢?

所以此处,我们需要使用到Cost Function(代价函数),代价函数越小,说明线性回归也越好(和训练集合拟合的越好),当然最小就是0,即完全拟合。

举个实际的例子:

我们想要根据房子的大小,预测房子的价格,给定如下数据集:


根据上面的数据集,画出如下所示的图:


我们需要根据这些点拟合出一条直线,使得Cost Function最小。虽然现在我们还不知道Cost Function内部到底是什么样的,但是我们的目标是:给定输入向量x,输出向量y,theta向量,输出Cost值。

Cost Function:

Cost Function的用途:对假设的函数进行评价,Cost Function越小的函数,说明对训练数据拟合的越好。

下图详细说明了当Cost Function为黑盒的时候,Cost Function的作用:

但是我们肯定想知道Cost Function的内部结构是什么?因此我们给出下面的公式:

其中:

表示向量x中的第i个元素;

表示向量y中的第i个元素;

表示已知的假设函数;m表示训练集的数量。

如果theta0一直为0,则theta1与J的函数为:

如果theta0和theta1都不固定,则theta0、theta1、J的函数为:

当然我们也能够用二维的图来表示,即等高线图:

注意如果是线性回归,则cost function一定是碗状的,即只有一个最小点。

Gradient Descent(梯度下降):

但是又一个问题引出来了,虽然给定一个函数,我们能够根据cost function知道这个函数拟合的好不好,但是毕竟函数有这么多,总不能一个一个试吧?

于是我们引出了梯度下降:能够找出cost function函数的最小值。(当然解决问题的方法有很多,梯度下降只是其中一个,还有一种方法叫Normal Equation)。

梯度下降的原理:将函数比作一座山,我们站在某个山坡上,往四周看,从哪个方向向下走一小步,能够下降的最快。

方法:

a) 先确定向下一步的步伐大小,我们称为learning rate;

b) 任意给定一个初始值:和;

c) 确定一个向下的方向,并向下走预定的步伐,并更新和;

d) 当下降的高度小于某个定义的值,则停止下降。

算法:

特点:

a)初始点不同,获得的最小值也不同,因此梯度下降求得的只是局部最小值;

b)越接近最小值,下降速度越慢。

问题1:如果和初始值就在local minimum的位置,则、会如何变化?

答案:因为、已经在local minimum位置,所以derivative肯定是0,因此、不会改变。

问题2:如果取到一个正确的值,则cost function应该会越来越小。那么,怎么取值?

答案:随时观察值,如果cost function变小了,则OK;反之,则再取一个更小的值。

下图就详细说明了梯度下降的过程:

从上图中可以看出:初始点不同,获得的最小值也不同,因此,梯度下降求得的只是局部最小值。

注意:下降的步伐大小非常重要,因为,如果太小,则找到函数最小值的速度就很慢;如果太大,则可能会出现overshoot the minimum现象。

下图就是overshoot现象:

如果Learning Rate取值后发现J function增长了,则需要减小Learning Rate的值。

Integrating with Gradient Descent & Linear Regression:

梯度下降能够求出一个函数的最小值。

线性回归需要求得最小的Cost Function。

因此我们能够对Cost Function运用梯度下降,即将梯度下降和线性回归进行整合,如下图所示:

梯度下降是通过不停的迭代,而我们比较关注迭代的次数,因为这关系到梯度下降的执行速度,为了减少迭代次数,因此引入了Feature Scaling。

Feature Scaling:

此种方法应用于梯度下降,为了加快梯度下降的执行速度。

思想:将各个feature的值标准化,使得取值范围大致都在-1<=x<=1之间。

常用的方法是Mean Normalization,即,或者[X-mean(X)]/std(X)。

练习题

我们想要通过期中考试成绩预测期末考试成绩,我们希望得到的方程为:

给定以下训练集:

我们想对(midterm exam)^2进行feature scaling,则经过feature scaling后的值为多少?

解答:其中max = 8836,min = 4761,mean = 6675.5,则 = (4761 - 6675.5)/(8836 - 4761) = -0.47 。

多变量线性回归

前面我们只介绍了单变量的线性回归,即只有一个输入变量,现实世界可不只是这么简单,因此此处我们要介绍多变量的线性回归。

举个例子:房价其实受很多因素决定,比如size、number of bedrooms、number of floors、age of home等,这里我们假设房价由4个因素决定,如下图所示:

我们前面定义过单变量线性回归的模型:

这里我们可以定义出多变量线性回归的模型:

Cost Function如下:

如果下面我们要用梯度下降解决多变量的线性回归,则我们还是可以用传统的梯度下降算法进行计算:

总练习题

我们想要根据一个学生第一年的成绩预测第二年的成绩,x为第一年得到A的数量,y为第二年得到A的数量,给定以下数据集:

(1) 训练集的个数?

答:4个。

(2) J(0, 1)的结果是多少?

解:J(0,1) = 1/(2*4)*[(3-4)^2+(2-1)^2+(4-3)^2+(0-1)^2] = 1/8*(1+1+1+1) = 1/2 = 0.5。

我们也可以通过vectorization的方法快速算出J(0, 1):

下面是通过TensorFlow进行简单的实现:

#!/usr/bin/env python  from __future__ import print_function  import tensorflow as tf import numpy as np  trX = np.linspace(-1, 1, 101) # create a y value which is approximately linear but with some random noise trY = 2 * trX + \   np.ones(*trX.shape) * 4 + \   np.random.randn(*trX.shape) * 0.03  X = tf.placeholder(tf.float32) # create symbolic variables Y = tf.placeholder(tf.float32)  def model(X, w, b):   # linear regression is just X*w + b, so this model line is pretty simple   return tf.mul(X, w) + b   # create a shared for weight s w = tf.Variable(0.0, name="weights") # create a variable for biases b = tf.Variable(0.0, name="biases") y_model = model(X, w, b)  cost = tf.square(Y - y_model) # use square error for cost function  # construct an optimizer to minimize cost and fit line to mydata train_op = tf.train.GradientDescentOptimizer(0.01).minimize(cost)  # launch the graph in a session with tf.Session() as sess:   # you need to initialize variables (in this case just variable w)   init = tf.initialize_all_variables()   sess.run(init)    # train   for i in range(100):     for (x, y) in zip(trX, trY):       sess.run(train_op, feed_dict={X: x, Y: y})    # print weight   print(sess.run(w)) # it should be something around 2   # print bias   print(sess.run(b)) # it should be something atound 4 

参考:

TensorFlow线性回归Demo

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    Tensorflow实现卷积神经网络用于人脸关键点识别
    下一条:
    tf.truncated_normal与tf.random_normal的详细用法
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 2024.07.09日OpenAI将终止对中国等国家和地区API服务(0个评论)
    • 2024/6/9最新免费公益节点SSR/V2ray/Shadowrocket/Clash节点分享|科学上网|免费梯子(1个评论)
    • 国外服务器实现api.openai.com反代nginx配置(0个评论)
    • 2024/4/28最新免费公益节点SSR/V2ray/Shadowrocket/Clash节点分享|科学上网|免费梯子(1个评论)
    • 近期文章
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2017-07
    • 2017-08
    • 2017-09
    • 2018-01
    • 2018-07
    • 2018-08
    • 2018-09
    • 2018-12
    • 2019-01
    • 2019-02
    • 2019-03
    • 2019-04
    • 2019-05
    • 2019-06
    • 2019-07
    • 2019-08
    • 2019-09
    • 2019-10
    • 2019-11
    • 2019-12
    • 2020-01
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2020-07
    • 2020-08
    • 2020-09
    • 2020-10
    • 2020-11
    • 2021-04
    • 2021-05
    • 2021-06
    • 2021-07
    • 2021-08
    • 2021-09
    • 2021-10
    • 2021-12
    • 2022-01
    • 2022-02
    • 2022-03
    • 2022-04
    • 2022-05
    • 2022-06
    • 2022-07
    • 2022-08
    • 2022-09
    • 2022-10
    • 2022-11
    • 2022-12
    • 2023-01
    • 2023-02
    • 2023-03
    • 2023-04
    • 2023-05
    • 2023-06
    • 2023-07
    • 2023-08
    • 2023-09
    • 2023-10
    • 2023-12
    • 2024-02
    • 2024-04
    • 2024-05
    • 2024-06
    • 2025-02
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客