侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

TensorFlow模型保存和提取的方法

技术  /  管理员 发布于 7年前   239

一、TensorFlow模型保存和提取方法

1. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取。tf.train.Saver对象saver的save方法将TensorFlow模型保存到指定路径中,saver.save(sess,"Model/model.ckpt") ,实际在这个文件目录下会生成4个人文件:

checkpoint文件保存了一个录下多有的模型文件列表,model.ckpt.meta保存了TensorFlow计算图的结构信息,model.ckpt保存每个变量的取值,此处文件名的写入方式会因不同参数的设置而不同,但加载restore时的文件路径名是以checkpoint文件中的“model_checkpoint_path”值决定的。

2. 加载这个已保存的TensorFlow模型的方法是saver.restore(sess,"./Model/model.ckpt") ,加载模型的代码中也要定义TensorFlow计算图上的所有运算并声明一个tf.train.Saver类,不同的是加载模型时不需要进行变量的初始化,而是将变量的取值通过保存的模型加载进来,注意加载路径的写法。若不希望重复定义计算图上的运算,可直接加载已经持久化的图,saver =tf.train.import_meta_graph("Model/model.ckpt.meta") 。

3.tf.train.Saver类也支持在保存和加载时给变量重命名,声明Saver类对象的时候使用一个字典dict重命名变量即可,{"已保存的变量的名称name": 重命名变量名},saver = tf.train.Saver({"v1":u1, "v2": u2})即原来名称name为v1的变量现在加载到变量u1(名称name为other-v1)中。

4. 上一条做的目的之一就是方便使用变量的滑动平均值。如果在加载模型时直接将影子变量映射到变量自身,则在使用训练好的模型时就不需要再调用函数来获取变量的滑动平均值了。载入时,声明Saver类对象时通过一个字典将滑动平均值直接加载到新的变量中,saver = tf.train.Saver({"v/ExponentialMovingAverage": v}),另通过tf.train.ExponentialMovingAverage的variables_to_restore()函数获取变量重命名字典。

此外,通过convert_variables_to_constants函数将计算图中的变量及其取值通过常量的方式保存于一个文件中。

二、TensorFlow程序实现

# 本文件程序为配合教材及学习进度渐进进行,请按照注释分段执行 # 执行时要注意IDE的当前工作过路径,最好每段重启控制器一次,输出结果更准确   # Part1: 通过tf.train.Saver类实现保存和载入神经网络模型  # 执行本段程序时注意当前的工作路径 import tensorflow as tf  v1 = tf.Variable(tf.constant(1.0, shape=[1]), name="v1") v2 = tf.Variable(tf.constant(2.0, shape=[1]), name="v2") result = v1 + v2  saver = tf.train.Saver()  with tf.Session() as sess:  sess.run(tf.global_variables_initializer())  saver.save(sess, "Model/model.ckpt")   # Part2: 加载TensorFlow模型的方法  import tensorflow as tf  v1 = tf.Variable(tf.constant(1.0, shape=[1]), name="v1") v2 = tf.Variable(tf.constant(2.0, shape=[1]), name="v2") result = v1 + v2  saver = tf.train.Saver()  with tf.Session() as sess:  saver.restore(sess, "./Model/model.ckpt") # 注意此处路径前添加"./"  print(sess.run(result)) # [ 3.]   # Part3: 若不希望重复定义计算图上的运算,可直接加载已经持久化的图  import tensorflow as tf  saver = tf.train.import_meta_graph("Model/model.ckpt.meta")  with tf.Session() as sess:  saver.restore(sess, "./Model/model.ckpt") # 注意路径写法  print(sess.run(tf.get_default_graph().get_tensor_by_name("add:0"))) # [ 3.]   # Part4: tf.train.Saver类也支持在保存和加载时给变量重命名  import tensorflow as tf  # 声明的变量名称name与已保存的模型中的变量名称name不一致 u1 = tf.Variable(tf.constant(1.0, shape=[1]), name="other-v1") u2 = tf.Variable(tf.constant(2.0, shape=[1]), name="other-v2") result = u1 + u2  # 若直接生命Saver类对象,会报错变量找不到 # 使用一个字典dict重命名变量即可,{"已保存的变量的名称name": 重命名变量名} # 原来名称name为v1的变量现在加载到变量u1(名称name为other-v1)中 saver = tf.train.Saver({"v1": u1, "v2": u2})  with tf.Session() as sess:  saver.restore(sess, "./Model/model.ckpt")  print(sess.run(result)) # [ 3.]   # Part5: 保存滑动平均模型  import tensorflow as tf  v = tf.Variable(0, dtype=tf.float32, name="v") for variables in tf.global_variables():  print(variables.name) # v:0  ema = tf.train.ExponentialMovingAverage(0.99) maintain_averages_op = ema.apply(tf.global_variables()) for variables in tf.global_variables():  print(variables.name) # v:0        # v/ExponentialMovingAverage:0  saver = tf.train.Saver()  with tf.Session() as sess:  sess.run(tf.global_variables_initializer())  sess.run(tf.assign(v, 10))  sess.run(maintain_averages_op)  saver.save(sess, "Model/model_ema.ckpt")  print(sess.run([v, ema.average(v)])) # [10.0, 0.099999905]   # Part6: 通过变量重命名直接读取变量的滑动平均值  import tensorflow as tf  v = tf.Variable(0, dtype=tf.float32, name="v") saver = tf.train.Saver({"v/ExponentialMovingAverage": v})  with tf.Session() as sess:  saver.restore(sess, "./Model/model_ema.ckpt")  print(sess.run(v)) # 0.0999999   # Part7: 通过tf.train.ExponentialMovingAverage的variables_to_restore()函数获取变量重命名字典  import tensorflow as tf  v = tf.Variable(0, dtype=tf.float32, name="v") # 注意此处的变量名称name一定要与已保存的变量名称一致 ema = tf.train.ExponentialMovingAverage(0.99) print(ema.variables_to_restore()) # {'v/ExponentialMovingAverage': <tf.Variable 'v:0' shape=() dtype=float32_ref>} # 此处的v取自上面变量v的名称name="v"  saver = tf.train.Saver(ema.variables_to_restore())  with tf.Session() as sess:  saver.restore(sess, "./Model/model_ema.ckpt")  print(sess.run(v)) # 0.0999999   # Part8: 通过convert_variables_to_constants函数将计算图中的变量及其取值通过常量的方式保存于一个文件中  import tensorflow as tf from tensorflow.python.framework import graph_util  v1 = tf.Variable(tf.constant(1.0, shape=[1]), name="v1") v2 = tf.Variable(tf.constant(2.0, shape=[1]), name="v2") result = v1 + v2  with tf.Session() as sess:  sess.run(tf.global_variables_initializer())  # 导出当前计算图的GraphDef部分,即从输入层到输出层的计算过程部分  graph_def = tf.get_default_graph().as_graph_def()  output_graph_def = graph_util.convert_variables_to_constants(sess,   graph_def, ['add'])   with tf.gfile.GFile("Model/combined_model.pb", 'wb') as f:   f.write(output_graph_def.SerializeToString())   # Part9: 载入包含变量及其取值的模型  import tensorflow as tf from tensorflow.python.platform import gfile  with tf.Session() as sess:  model_filename = "Model/combined_model.pb"  with gfile.FastGFile(model_filename, 'rb') as f:   graph_def = tf.GraphDef()   graph_def.ParseFromString(f.read())   result = tf.import_graph_def(graph_def, return_elements=["add:0"])  print(sess.run(result)) # [array([ 3.], dtype=float32)] 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    TensorFlow实现RNN循环神经网络
    下一条:
    TensorFlow模型保存/载入的两种方法
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 2024.07.09日OpenAI将终止对中国等国家和地区API服务(0个评论)
    • 2024/6/9最新免费公益节点SSR/V2ray/Shadowrocket/Clash节点分享|科学上网|免费梯子(1个评论)
    • 国外服务器实现api.openai.com反代nginx配置(0个评论)
    • 2024/4/28最新免费公益节点SSR/V2ray/Shadowrocket/Clash节点分享|科学上网|免费梯子(1个评论)
    • 近期文章
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2017-07
    • 2017-08
    • 2017-09
    • 2018-01
    • 2018-07
    • 2018-08
    • 2018-09
    • 2018-12
    • 2019-01
    • 2019-02
    • 2019-03
    • 2019-04
    • 2019-05
    • 2019-06
    • 2019-07
    • 2019-08
    • 2019-09
    • 2019-10
    • 2019-11
    • 2019-12
    • 2020-01
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2020-07
    • 2020-08
    • 2020-09
    • 2020-10
    • 2020-11
    • 2021-04
    • 2021-05
    • 2021-06
    • 2021-07
    • 2021-08
    • 2021-09
    • 2021-10
    • 2021-12
    • 2022-01
    • 2022-02
    • 2022-03
    • 2022-04
    • 2022-05
    • 2022-06
    • 2022-07
    • 2022-08
    • 2022-09
    • 2022-10
    • 2022-11
    • 2022-12
    • 2023-01
    • 2023-02
    • 2023-03
    • 2023-04
    • 2023-05
    • 2023-06
    • 2023-07
    • 2023-08
    • 2023-09
    • 2023-10
    • 2023-12
    • 2024-02
    • 2024-04
    • 2024-05
    • 2024-06
    • 2025-02
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客