侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

TensorFlow实现创建分类器

技术  /  管理员 发布于 7年前   330

本文实例为大家分享了TensorFlow实现创建分类器的具体代码,供大家参考,具体内容如下

创建一个iris数据集的分类器。

加载样本数据集,实现一个简单的二值分类器来预测一朵花是否为山鸢尾。iris数据集有三类花,但这里仅预测是否是山鸢尾。导入iris数据集和工具库,相应地对原数据集进行转换。

# Combining Everything Together#----------------------------------# This file will perform binary classification on the# iris dataset. We will only predict if a flower is# I.setosa or not.## We will create a simple binary classifier by creating a line# and running everything through a sigmoid to get a binary predictor.# The two features we will use are pedal length and pedal width.## We will use batch training, but this can be easily# adapted to stochastic training.import matplotlib.pyplot as pltimport numpy as npfrom sklearn import datasetsimport tensorflow as tffrom tensorflow.python.framework import opsops.reset_default_graph()# 导入iris数据集# 根据目标数据是否为山鸢尾将其转换成1或者0。# 由于iris数据集将山鸢尾标记为0,我们将其从0置为1,同时把其他物种标记为0。# 本次训练只使用两种特征:花瓣长度和花瓣宽度,这两个特征在x-value的第三列和第四列# iris.target = {0, 1, 2}, where '0' is setosa# iris.data ~ [sepal.width, sepal.length, pedal.width, pedal.length]iris = datasets.load_iris()binary_target = np.array([1. if x==0 else 0. for x in iris.target])iris_2d = np.array([[x[2], x[3]] for x in iris.data])# 声明批量训练大小batch_size = 20# 初始化计算图sess = tf.Session()# 声明数据占位符x1_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)x2_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)# 声明模型变量# Create variables A and b (0 = x1 - A*x2 + b)A = tf.Variable(tf.random_normal(shape=[1, 1]))b = tf.Variable(tf.random_normal(shape=[1, 1]))# 定义线性模型:# 如果找到的数据点在直线以上,则将数据点代入x2-x1*A-b计算出的结果大于0;# 同理找到的数据点在直线以下,则将数据点代入x2-x1*A-b计算出的结果小于0。# x1 - A*x2 + bmy_mult = tf.matmul(x2_data, A)my_add = tf.add(my_mult, b)my_output = tf.subtract(x1_data, my_add)# 增加TensorFlow的sigmoid交叉熵损失函数(cross entropy)xentropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=my_output, labels=y_target)# 声明优化器方法my_opt = tf.train.GradientDescentOptimizer(0.05)train_step = my_opt.minimize(xentropy)# 创建一个变量初始化操作init = tf.global_variables_initializer()sess.run(init)# 运行迭代1000次for i in range(1000):  rand_index = np.random.choice(len(iris_2d), size=batch_size)  # rand_x = np.transpose([iris_2d[rand_index]])  # 传入三种数据:花瓣长度、花瓣宽度和目标变量  rand_x = iris_2d[rand_index]  rand_x1 = np.array([[x[0]] for x in rand_x])  rand_x2 = np.array([[x[1]] for x in rand_x])  #rand_y = np.transpose([binary_target[rand_index]])  rand_y = np.array([[y] for y in binary_target[rand_index]])  sess.run(train_step, feed_dict={x1_data: rand_x1, x2_data: rand_x2, y_target: rand_y})  if (i+1)%200==0:    print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)) + ', b = ' + str(sess.run(b)))# 绘图# 获取斜率/截距# Pull out slope/intercept[[slope]] = sess.run(A)[[intercept]] = sess.run(b)# 创建拟合线x = np.linspace(0, 3, num=50)ablineValues = []for i in x: ablineValues.append(slope*i+intercept)# 绘制拟合曲线setosa_x = [a[1] for i,a in enumerate(iris_2d) if binary_target[i]==1]setosa_y = [a[0] for i,a in enumerate(iris_2d) if binary_target[i]==1]non_setosa_x = [a[1] for i,a in enumerate(iris_2d) if binary_target[i]==0]non_setosa_y = [a[0] for i,a in enumerate(iris_2d) if binary_target[i]==0]plt.plot(setosa_x, setosa_y, 'rx', ms=10, mew=2, label='setosa')plt.plot(non_setosa_x, non_setosa_y, 'ro', label='Non-setosa')plt.plot(x, ablineValues, 'b-')plt.xlim([0.0, 2.7])plt.ylim([0.0, 7.1])plt.suptitle('Linear Separator For I.setosa', fontsize=20)plt.xlabel('Petal Length')plt.ylabel('Petal Width')plt.legend(loc='lower right')plt.show()

输出:

Step #200 A = [[ 8.70572948]], b = [[-3.46638322]]Step #400 A = [[ 10.21302414]], b = [[-4.720438]]Step #600 A = [[ 11.11844635]], b = [[-5.53361702]]Step #800 A = [[ 11.86427212]], b = [[-6.0110755]]Step #1000 A = [[ 12.49524498]], b = [[-6.29990339]]

 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    tensorflow TFRecords文件的生成和读取的方法
    下一条:
    Tensorflow 利用tf.contrib.learn建立输入函数的方法
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 2024.07.09日OpenAI将终止对中国等国家和地区API服务(0个评论)
    • 2024/6/9最新免费公益节点SSR/V2ray/Shadowrocket/Clash节点分享|科学上网|免费梯子(1个评论)
    • 国外服务器实现api.openai.com反代nginx配置(0个评论)
    • 2024/4/28最新免费公益节点SSR/V2ray/Shadowrocket/Clash节点分享|科学上网|免费梯子(1个评论)
    • 近期文章
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2017-07
    • 2017-08
    • 2017-09
    • 2018-01
    • 2018-07
    • 2018-08
    • 2018-09
    • 2018-12
    • 2019-01
    • 2019-02
    • 2019-03
    • 2019-04
    • 2019-05
    • 2019-06
    • 2019-07
    • 2019-08
    • 2019-09
    • 2019-10
    • 2019-11
    • 2019-12
    • 2020-01
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2020-07
    • 2020-08
    • 2020-09
    • 2020-10
    • 2020-11
    • 2021-04
    • 2021-05
    • 2021-06
    • 2021-07
    • 2021-08
    • 2021-09
    • 2021-10
    • 2021-12
    • 2022-01
    • 2022-02
    • 2022-03
    • 2022-04
    • 2022-05
    • 2022-06
    • 2022-07
    • 2022-08
    • 2022-09
    • 2022-10
    • 2022-11
    • 2022-12
    • 2023-01
    • 2023-02
    • 2023-03
    • 2023-04
    • 2023-05
    • 2023-06
    • 2023-07
    • 2023-08
    • 2023-09
    • 2023-10
    • 2023-12
    • 2024-02
    • 2024-04
    • 2024-05
    • 2024-06
    • 2025-02
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客