侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

MongoDB中MapReduce的使用方法详解

数据库  /  管理员 发布于 5年前   221

前言

玩过Hadoop的小伙伴对MapReduce应该不陌生,MapReduce的强大且灵活,它可以将一个大问题拆分为多个小问题,将各个小问题发送到不同的机器上去处理,所有的机器都完成计算后,再将计算结果合并为一个完整的解决方案,这就是所谓的分布式计算。本文我们就来看看MongoDB中MapReduce的使用。

打算用mongodb mapreduce之前一定要知道的事!!!

mapreduce其实是分批处理数据的,每一百次重新reduce处理,所以到reduce里的数据如果是101条,那就会分2次进入。

这导致的问题就是在reduce中 如果 初始化 var count = 0;在循环中 count ++,最后输出的是1???

避免都方法是,把数据存在返回的value里,这个value是会在循环进入reduce的时候重用的。在循环中 count += value.count就能把之前都100加上了!!!

还有如果只有一条数据,那它不会进入reduce,会直接返回。

下面是具体例子:

string map = @"function() {var view = this;emit(view.activity, {pv: 1});}";string reduce = @" function(key, values) {var result = {pv: 0};values.forEach(function(value){ result.pv += value.pv;});return result;}";string finalize = @"function(key, value){return value;}";

mapReduce

MongoDB中的MapReduce可以用来实现更复杂的聚合命令,使用MapReduce主要实现两个函数:map函数和reduce函数,map函数用来生成键值对序列,map函数的结果作为reduce函数的参数,reduce函数中再做进一步的统计,比如我的数据集如下:

{"_id" : ObjectId("59fa71d71fd59c3b2cd908d7"),"name" : "鲁迅","book" : "呐喊","price" : 38.0,"publisher" : "人民文学出版社"}{"_id" : ObjectId("59fa71d71fd59c3b2cd908d8"),"name" : "曹雪芹","book" : "红楼梦","price" : 22.0,"publisher" : "人民文学出版社"}{"_id" : ObjectId("59fa71d71fd59c3b2cd908d9"),"name" : "钱钟书","book" : "宋诗选注","price" : 99.0,"publisher" : "人民文学出版社"}{"_id" : ObjectId("59fa71d71fd59c3b2cd908da"),"name" : "钱钟书","book" : "谈艺录","price" : 66.0,"publisher" : "三联书店"}{"_id" : ObjectId("59fa71d71fd59c3b2cd908db"),"name" : "鲁迅","book" : "彷徨","price" : 55.0,"publisher" : "花城出版社"}

假如我想查询每位作者所出的书的总价,操作如下:

var map=function(){emit(this.name,this.price)}var reduce=function(key,value){return Array.sum(value)}var options={out:"totalPrice"}db.sang_books.mapReduce(map,reduce,options);db.totalPrice.find()

emit函数主要用来实现分组,接收两个参数,第一个参数表示分组的字段,第二个参数表示要统计的数据,reduce来做具体的数据处理操作,接收两个参数,对应emit方法的两个参数,这里使用了Array中的sum函数对price字段进行自加处理,options中定义了将结果输出的集合,届时我们将在这个集合中去查询数据,默认情况下,这个集合即使在数据库重启后也会保留,并且保留集合中的数据。

查询结果如下:

{ "_id" : "曹雪芹", "value" : 22.0}{ "_id" : "钱钟书", "value" : 165.0}{ "_id" : "鲁迅", "value" : 93.0}

再比如我想查询每位作者出了几本书,如下:

var map=function(){emit(this.name,1)}var reduce=function(key,value){return Array.sum(value)}var options={out:"bookNum"}db.sang_books.mapReduce(map,reduce,options);db.bookNum.find()

查询结果如下:

{ "_id" : "曹雪芹", "value" : 1.0}{ "_id" : "钱钟书", "value" : 2.0}{ "_id" : "鲁迅", "value" : 2.0}

将每位作者的书列出来,如下:

var map=function(){emit(this.name,this.book)}var reduce=function(key,value){return value.join(',')}var options={out:"books"}db.sang_books.mapReduce(map,reduce,options);db.books.find()

结果如下:

{ "_id" : "曹雪芹", "value" : "红楼梦"}{ "_id" : "钱钟书", "value" : "宋诗选注,谈艺录"}{ "_id" : "鲁迅", "value" : "呐喊,彷徨"}

比如查询每个人售价在¥40以上的书:

var map=function(){emit(this.name,this.book)}var reduce=function(key,value){return value.join(',')}var options={query:{price:{$gt:40}},out:"books"}db.sang_books.mapReduce(map,reduce,options);db.books.find()

query表示对查到的集合再进行筛选。

结果如下:

{ "_id" : "钱钟书", "value" : "宋诗选注,谈艺录"}{ "_id" : "鲁迅", "value" : "彷徨"}

runCommand实现

我们也可以利用runCommand命令来执行MapReduce。格式如下:

db.runCommand(    {     mapReduce: <collection>,     map: <function>,     reduce: <function>,     finalize: <function>,     out: <output>,     query: <document>,     sort: <document>,     limit: <number>,     scope: <document>,     jsMode: <boolean>,     verbose: <boolean>,     bypassDocumentValidation: <boolean>,     collation: <document>    }    )

含义如下:

参数 含义
mapReduce 表示要操作的集合
map map函数
reduce reduce函数
finalize 最终处理函数
out 输出的集合
query 对结果进行过滤
sort 对结果排序
limit 返回的结果数
scope 设置参数值,在这里设置的值在map、reduce、finalize函数中可见
jsMode 是否将map执行的中间数据由javascript对象转换成BSON对象,默认为false
verbose 是否显示详细的时间统计信息
bypassDocumentValidation 是否绕过文档验证
collation 其他一些校对

如下操作,表示执行MapReduce操作并对统计的集合限制返回条数,限制返回条数之后再进行统计操作,如下:

var map=function(){emit(this.name,this.book)}var reduce=function(key,value){return value.join(',')}db.runCommand({mapreduce:'sang_books',map,reduce,out:"books",limit:4,verbose:true})db.books.find()

执行结果如下:

{ "_id" : "曹雪芹", "value" : "红楼梦"}{ "_id" : "钱钟书", "value" : "宋诗选注,谈艺录"}{ "_id" : "鲁迅", "value" : "呐喊"}

小伙伴们看到,鲁迅有一本书不见了,就是因为limit是先限制集合返回条数,然后再执行统计操作。

finalize操作表示最终处理函数,如下:

var f1 = function(key,reduceValue){var obj={};obj.author=key;obj.books=reduceValue; return obj}var map=function(){emit(this.name,this.book)}var reduce=function(key,value){return value.join(',')}db.runCommand({mapreduce:'sang_books',map,reduce,out:"books",finalize:f1})db.books.find()

f1第一个参数key表示emit中的第一个参数,第二个参数表示reduce的执行结果,我们可以在f1中对这个结果进行再处理,结果如下:

{ "_id" : "曹雪芹", "value" : {  "author" : "曹雪芹",  "books" : "红楼梦" }}{ "_id" : "钱钟书", "value" : {  "author" : "钱钟书",  "books" : "宋诗选注,谈艺录" }}{ "_id" : "鲁迅", "value" : {  "author" : "鲁迅",  "books" : "呐喊,彷徨" }}

scope则可以用来定义一个在map、reduce和finalize中都可见的变量,如下:

var f1 = function(key,reduceValue){var obj={};obj.author=key;obj.books=reduceValue;obj.sang=sang; return obj}var map=function(){emit(this.name,this.book)}var reduce=function(key,value){return value.join(',--'+sang+'--,')}db.runCommand({mapreduce:'sang_books',map,reduce,out:"books",finalize:f1,scope:{sang:"haha"}})db.books.find()

执行结果如下:

{ "_id" : "曹雪芹", "value" : {  "author" : "曹雪芹",  "books" : "红楼梦",  "sang" : "haha" }}{ "_id" : "钱钟书", "value" : {  "author" : "钱钟书",  "books" : "宋诗选注,--haha--,谈艺录",  "sang" : "haha" }}{ "_id" : "鲁迅", "value" : {  "author" : "鲁迅",  "books" : "呐喊,--haha--,彷徨",  "sang" : "haha" }}

好了,MongoDB中的MapReduce我们就先说到这里,小伙伴们有问题欢迎留言讨论。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对AIDI的支持。

参考资料:

1.《MongoDB权威指南第2版》

2.mongodb mapreduce小试

3.mongoDB--mapreduce用法详解(未找到原始出处)


  • 上一条:
    MongoDB优化心得分享
    下一条:
    mongodb禁止外网访问及添加账号的操作方法
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 分库分表的目的、优缺点及具体实现方式介绍(0个评论)
    • DevDB - 在 VS 代码中直接访问数据库(0个评论)
    • 在ubuntu系统中实现mysql数据存储目录迁移流程步骤(0个评论)
    • 在mysql中使用存储过程批量新增测试数据流程步骤(0个评论)
    • php+mysql数据库批量根据条件快速更新、连表更新sql实现(0个评论)
    • 近期文章
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • PHP 8.4 Alpha 1现已发布!(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2017-06
    • 2017-08
    • 2017-09
    • 2017-10
    • 2017-11
    • 2018-01
    • 2018-05
    • 2018-10
    • 2018-11
    • 2020-02
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2020-07
    • 2020-08
    • 2020-09
    • 2021-02
    • 2021-04
    • 2021-07
    • 2021-08
    • 2021-11
    • 2021-12
    • 2022-02
    • 2022-03
    • 2022-05
    • 2022-06
    • 2022-07
    • 2022-08
    • 2022-09
    • 2022-10
    • 2022-11
    • 2022-12
    • 2023-01
    • 2023-03
    • 2023-04
    • 2023-05
    • 2023-07
    • 2023-08
    • 2023-10
    • 2023-11
    • 2023-12
    • 2024-01
    • 2024-03
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客