侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

scikit-learn使用笔记与sign prediction简单小结

框架(架构)  /  管理员 发布于 7年前   139

经Edwin Chen的推荐,认识了scikit-learn这个非常强大的python机器学习工具包。这个帖子作为笔记。(其实都没有笔记的意义,因为他家文档做的太好了,不过还是为自己记记吧,为以后节省若干分钟)。如果有幸此文被想用scikit-learn的你看见,也还是非常希望你去它们的主页看文档。主页中最值得关注的几个部分:User Guide几乎是machine learning的索引,各种方法如何使用都有,Reference是各个类的用法索引。

S1. 导入数据
大多数数据的格式都是M个N维向量,分为训练集和测试集。所以,知道如何导入向量(矩阵)数据是最为关键的一点。这里要用到numpy来协助。假设数据格式是:


复制代码代码如下:
Stock prices indicator1 indicator2
2.0 123 1252
1.0 ....
.. . .
.

导入代码参考:


复制代码代码如下:
import numpy as np
f = open("filename.txt")
f.readline() # skip the header
data = np.loadtxt(f)
X = data[:, 1:] # select columns 1 through end
y = data[:, 0] # select column 0, the stock price

libsvm格式的数据导入:


复制代码代码如下:
>>> from sklearn.datasets import load_svmlight_file
>>> X_train, y_train = load_svmlight_file("/path/to/train_dataset.txt")
...
>>>X_train.todense()#将稀疏矩阵转化为完整特征矩阵

更多格式数据导入与生成参考:http://scikit-learn.org/stable/datasets/index.html


S2. Supervised Classification 几种常用方法:

Logistic Regression


复制代码代码如下:
>>> from sklearn.linear_model import LogisticRegression
>>> clf2 = LogisticRegression().fit(X, y)
>>> clf2
LogisticRegression(C=1.0, intercept_scaling=1, dual=False, fit_intercept=True,
penalty='l2', tol=0.0001)
>>> clf2.predict_proba(X_new)
array([[ 9.07512928e-01, 9.24770379e-02, 1.00343962e-05]])

Linear SVM (Linear kernel)


复制代码代码如下:
>>> from sklearn.svm import LinearSVC
>>> clf = LinearSVC()

>>> clf.fit(X, Y)
>>> X_new = [[ 5.0, 3.6, 1.3, 0.25]]
>>> clf.predict(X_new)#reuslt[0] if class label
array([0], dtype=int32)

SVM (RBF or other kernel)


复制代码代码如下:
>>> from sklearn import svm
>>> clf = svm.SVC()
>>> clf.fit(X, Y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3,
gamma=0.0, kernel='rbf', probability=False, shrinking=True, tol=0.001,
verbose=False)
>>> clf.predict([[2., 2.]])
array([ 1.])

Naive Bayes (Gaussian likelihood)


复制代码代码如下:
from sklearn.naive_bayes import GaussianNB
>>> from sklearn import datasets
>>> gnb = GaussianNB()
>>> gnb = gnb.fit(x, y)
>>> gnb.predict(xx)#result[0] is the most likely class label

Decision Tree (classification not regression)


复制代码代码如下:
>>> from sklearn import tree
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(X, Y)
>>> clf.predict([[2., 2.]])
array([ 1.])

Ensemble (Random Forests, classification not regression)


复制代码代码如下:
>>> from sklearn.ensemble import RandomForestClassifier
>>> clf = RandomForestClassifier(n_estimators=10)
>>> clf = clf.fit(X, Y)
>>> clf.predict(X_test)

S3. Model Selection (Cross-validation)
手工分training data和testing data当然可以了,但是更方便的方法是自动进行,scikit-learn也有相关的功能,这里记录下cross-validation的代码:


复制代码代码如下:
>>> from sklearn import cross_validation
>>> from sklearn import svm
>>> clf = svm.SVC(kernel='linear', C=1)
>>> scores = cross_validation.cross_val_score(clf, iris.data, iris.target, cv=5)#5-fold cv
#change metrics
>>> from sklearn import metrics
>>> cross_validation.cross_val_score(clf, iris.data, iris.target, cv=5, score_func=metrics.f1_score)
#f1 score: <a href="http://en.wikipedia.org/wiki/F1_score">http://en.wikipedia.org/wiki/F1_score</a>

more about cross-validation: http://scikit-learn.org/stable/modules/cross_validation.html

Note: if using LR, clf = LogisticRegression().

S4. Sign Prediction Experiment
数据集,EPINIONS,有user与user之间的trust与distrust关系,以及interaction(对用户评论的有用程度打分)。

Features:网络拓扑feature参考"Predict positive and negative links in online social network",用户交互信息feature。

一共设了3类instances,每类3次训练+测试,训练数据是测试数据的10倍,~80,000个29/5/34维向量,得出下面一些结论。时间上,GNB最快(所有instance都是2~3秒跑完),DT非常快(有一类instance只用了1秒,其他都要4秒),LR很快(三类instance的时间分别是2秒,5秒,~30秒),RF也不慢(一个instance9秒,其他26秒),linear kernel的SVM要比LR慢好几倍(所有instance要跑30多秒),RBF kernel的SVM比linear SVM要慢20+倍到上百倍(第一个instance要11分钟,第二个instance跑了近两个小时)。准确度上RF>LR>DT>GNB>SVM(RBF kernel)>SVM(Linear kernel)。GNB和SVM(linear kernel)、SVM(rbf kernel)在第二类instance上差的比较远(10~20个百分点),LR、DT都差不多,RF确实体现了ENSEMBLE方法的强大,比LR有较为显著的提升(近2~4个百分点)。(注:由于到该文提交为止,RBF版的SVM才跑完一次测试中的两个instance,上面结果仅基于此。另外,我还尝试了SGD等方法,总体上都不是特别理想,就不记了)。在feature的有效性上面,用户交互feature比网络拓扑feature更加有效百分五到百分十。

S5.通用测试源代码

这里是我写的用包括上述算法在内的多种算法的自动分类并10fold cross-validation的python代码,只要输入文件保持本文开头所述的格式(且不包含注释信息),即可用多种不同算法测试分类效果。Download.


  • 上一条:
    Ubuntu 14.04 LTS中安装fcitx中文输入法的教程
    下一条:
    使用yum查看工具lspci所在包并安装的方法(详解)
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • Filament v3.1版本发布(0个评论)
    • docker + gitea搭建一个git服务器流程步骤(0个评论)
    • websocket的三种架构方式使用优缺点浅析(0个评论)
    • ubuntu20.4系统中宿主机安装nginx服务,docker容器中安装php8.2实现运行laravel10框架网站(0个评论)
    • phpstudy_pro(小皮面板)中安装最新php8.2.9版本流程步骤(0个评论)
    • 近期文章
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2018-05
    • 2020-02
    • 2020-03
    • 2020-05
    • 2020-06
    • 2020-07
    • 2020-08
    • 2020-11
    • 2021-03
    • 2021-09
    • 2021-10
    • 2021-11
    • 2022-01
    • 2022-02
    • 2022-03
    • 2022-08
    • 2023-08
    • 2023-10
    • 2023-12
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客