侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

MySQL优化之对RAND()的优化方法

数据库  /  管理员 发布于 6年前   380

众所周知,在MySQL中,如果直接 ORDER BY RAND() 的话,效率非常差,因为会多次执行。事实上,如果等值查询也是用 RAND() 的话也如此,我们先来看看下面这几个SQL的不同执行计划和执行耗时。

首先,看下建表DDL,这是一个没有显式自增主键的InnoDB表:
复制代码 代码如下:
[yejr@imysql]> show create table t_innodb_random\G
*************************** 1. row ***************************
Table: t_innodb_random
Create Table: CREATE TABLE `t_innodb_random` (
`id` int(10) unsigned NOT NULL,
`user` varchar(64) NOT NULL DEFAULT '',
KEY `idx_id` (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
往这个表里灌入一些测试数据,至少10万以上, id 字段也是乱序的。
复制代码 代码如下:
[yejr@imysql]> select count(*) from t_innodb_random\G
*************************** 1. row ***************************
count(*): 393216

1、常量等值检索:

复制代码 代码如下:
[yejr@imysql]> explain select id from t_innodb_random where id = 13412\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t_innodb_random
type: ref
possible_keys: idx_id
key: idx_id
key_len: 4
ref: const
rows: 1
Extra: Using index

[yejr@imysql]> select id from t_innodb_random where id = 13412;
1 row in set (0.00 sec)

可以看到执行计划很不错,是常量等值查询,速度非常快。

2、使用RAND()函数乘以常量,求得随机数后检索:

复制代码 代码如下:
[yejr@imysql]> explain select id from t_innodb_random where id = round(rand()*13241324)\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t_innodb_random
type: index
possible_keys: NULL
key: idx_id
key_len: 4
ref: NULL
rows: 393345
Extra: Using where; Using index

[yejr@imysql]> select id from t_innodb_random where id = round(rand()*13241324)\G
Empty set (0.26 sec)

可以看到执行计划很糟糕,虽然是只扫描索引,但是做了全索引扫描,效率非常差。因为WHERE条件中包含了RAND(),使得MySQL把它当做变量来处理,无法用常量等值的方式查询,效率很低。

我们把常量改成取t_innodb_random表的最大id值,再乘以RAND()求得随机数后检索看看什么情况:
复制代码 代码如下:
[yejr@imysql]> explain select id from t_innodb_random where id = round(rand()*(select max(id) from t_innodb_random))\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: t_innodb_random
type: index
possible_keys: NULL
key: idx_id
key_len: 4
ref: NULL
rows: 393345
Extra: Using where; Using index
*************************** 2. row ***************************
id: 2
select_type: SUBQUERY
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: Select tables optimized away

[yejr@imysql]> select id from t_innodb_random where id = round(rand()*(select max(id) from t_innodb_random))\G
Empty set (0.27 sec)

可以看到,执行计划依然是全索引扫描,执行耗时也基本相当。

3、改造成普通子查询模式 ,这里有两次子查询

复制代码 代码如下:
[yejr@imysql]> explain select id from t_innodb_random where id = (select round(rand()*(select max(id) from t_innodb_random)) as nid)\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: t_innodb_random
type: index
possible_keys: NULL
key: idx_id
key_len: 4
ref: NULL
rows: 393345
Extra: Using where; Using index
*************************** 2. row ***************************
id: 3
select_type: SUBQUERY
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: Select tables optimized away

[yejr@imysql]> select id from t_innodb_random where id = (select round(rand()*(select max(id) from t_innodb_random)) as nid)\G
Empty set (0.27 sec)
可以看到,执行计划也不好,执行耗时较慢。

4、改造成JOIN关联查询,不过最大值还是用常量表示
复制代码 代码如下:
[yejr@imysql]> explain select id from t_innodb_random t1 join (select round(rand()*13241324) as id2) as t2 where t1.id = t2.id2\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: <derived2>
type: system
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 1
Extra:
*************************** 2. row ***************************
id: 1
select_type: PRIMARY
table: t1
type: ref
possible_keys: idx_id
key: idx_id
key_len: 4
ref: const
rows: 1
Extra: Using where; Using index
*************************** 3. row ***************************
id: 2
select_type: DERIVED
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: No tables used

[yejr@imysql]> select id from t_innodb_random t1 join (select round(rand()*13241324) as id2) as t2 where t1.id = t2.id2\G
Empty set (0.00 sec)
这时候执行计划就非常完美了,和最开始的常量等值查询是一样的了,执行耗时也非常之快。

这种方法虽然很好,但是有可能查询不到记录,改造范围查找,但结果LIMIT 1就可以了:
复制代码 代码如下:
[yejr@imysql]> explain select id from t_innodb_random where id > (select round(rand()*(select max(id) from t_innodb_random)) as nid) limit 1\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: t_innodb_random
type: index
possible_keys: NULL
key: idx_id
key_len: 4
ref: NULL
rows: 393345
Extra: Using where; Using index
*************************** 2. row ***************************
id: 3
select_type: SUBQUERY
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: Select tables optimized away

[yejr@imysql]> select id from t_innodb_random where id > (select round(rand()*(select max(id) from t_innodb_random)) as nid) limit 1\G
*************************** 1. row ***************************
id: 1301
1 row in set (0.00 sec)

可以看到,虽然执行计划也是全索引扫描,但是因为有了LIMIT 1,只需要找到一条记录,即可终止扫描,所以效率还是很快的。

小结:

从数据库中随机取一条记录时,可以把RAND()生成随机数放在JOIN子查询中以提高效率。

5、再来看看用ORDRR BY RAND()方式一次取得多个随机值的方式:
复制代码 代码如下:
[yejr@imysql]> explain select id from t_innodb_random order by rand() limit 1000\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t_innodb_random
type: index
possible_keys: NULL
key: idx_id
key_len: 4
ref: NULL
rows: 393345
Extra: Using index; Using temporary; Using filesort

[yejr@imysql]> select id from t_innodb_random order by rand() limit 1000;
1000 rows in set (0.41 sec)
全索引扫描,生成排序临时表,太差太慢了。

6、把随机数放在子查询里看看:
复制代码 代码如下:
[yejr@imysql]> explain select id from t_innodb_random where id > (select rand() * (select max(id) from t_innodb_random) as nid) limit 1000\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: t_innodb_random
type: index
possible_keys: NULL
key: idx_id
key_len: 4
ref: NULL
rows: 393345
Extra: Using where; Using index
*************************** 2. row ***************************
id: 3
select_type: SUBQUERY
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: Select tables optimized away

[yejr@imysql]> select id from t_innodb_random where id > (select rand() * (select max(id) from t_innodb_random) as nid) limit 1000\G
1000 rows in set (0.04 sec)
嗯,提速了不少,这个看起来还不赖:)

7、仿照上面的方法,改成JOIN和随机数子查询关联
复制代码 代码如下:
[yejr@imysql]> explain select id from t_innodb_random t1 join (select rand() * (select max(id) from t_innodb_random) as nid) t2 on t1.id > t2.nid limit 1000\G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: <derived2>
type: system
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 1
Extra:
*************************** 2. row ***************************
id: 1
select_type: PRIMARY
table: t1
type: range
possible_keys: idx_id
key: idx_id
key_len: 4
ref: NULL
rows: 196672
Extra: Using where; Using index
*************************** 3. row ***************************
id: 2
select_type: DERIVED
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: No tables used
*************************** 4. row ***************************
id: 3
select_type: SUBQUERY
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: Select tables optimized away

[yejr@imysql]> select id from t_innodb_random t1 join (select rand() * (select max(id) from t_innodb_random) as nid) t2 on t1.id > t2.nid limit 1000\G
1000 rows in set (0.00 sec)
可以看到,全索引检索,发现符合记录的条件后,直接取得1000行,这个方法是最快的。

综上,想从MySQL数据库中随机取一条或者N条记录时,最好把RAND()生成随机数放在JOIN子查询中以提高效率。
上面说了那么多的废话,最后简单说下,就是把下面这个SQL:
复制代码 代码如下:
SELECT id FROM table ORDER BY RAND() LIMIT n;
改造成下面这个:
复制代码 代码如下:
SELECT id FROM table t1 JOIN (SELECT RAND() * (SELECT MAX(id) FROM table) AS nid) t2 ON t1.id > t2.nid LIMIT n;
就可以享受在SQL中直接取得随机数了,不用再在程序中构造一串随机数去检索了。


  • 上一条:
    MySQL中日期比较时遇到的编码问题解决办法
    下一条:
    Mysql索引详细介绍
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 分库分表的目的、优缺点及具体实现方式介绍(0个评论)
    • DevDB - 在 VS 代码中直接访问数据库(0个评论)
    • 在ubuntu系统中实现mysql数据存储目录迁移流程步骤(0个评论)
    • 在mysql中使用存储过程批量新增测试数据流程步骤(0个评论)
    • php+mysql数据库批量根据条件快速更新、连表更新sql实现(0个评论)
    • 近期文章
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2017-06
    • 2017-08
    • 2017-09
    • 2017-10
    • 2017-11
    • 2018-01
    • 2018-05
    • 2018-10
    • 2018-11
    • 2020-02
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2020-07
    • 2020-08
    • 2020-09
    • 2021-02
    • 2021-04
    • 2021-07
    • 2021-08
    • 2021-11
    • 2021-12
    • 2022-02
    • 2022-03
    • 2022-05
    • 2022-06
    • 2022-07
    • 2022-08
    • 2022-09
    • 2022-10
    • 2022-11
    • 2022-12
    • 2023-01
    • 2023-03
    • 2023-04
    • 2023-05
    • 2023-07
    • 2023-08
    • 2023-10
    • 2023-11
    • 2023-12
    • 2024-01
    • 2024-03
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客