侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

PHP实现八皇后算法

php  /  管理员 发布于 7年前   224

回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。

八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯・贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。

这边先以4皇后来解释解决步骤:

详细说明

在第一行有四种可能,选择第一个位置放上皇后

第二行原本可以有四种可能摆放,但是第一第二个已经和第一行的皇后冲突了,因此只剩下第三第四个格子了,先选择第三个格子

接下来是第三行,根据规则可以看出,第三行已经没有位置放了,因为都跟第一第二行的皇后冲突,此时返回到第二行第四个

继续来到第三行,发现只有第二个满足条件

然后发现第四行已经不能放了,只能继续返回,返回到第一行,开始下一种可能

按照 1-5 的步骤,可以找到下面的其中一种解法

总而言之,回溯法就是开始一路到底,碰到南墙了就返回走另外一条路,有点像穷举法那样走遍所有的路。

PHP代码实现:

N = $N; $this->chessboard = array(); for ($i=0; $i < $N; $i++) {   for ($j=0; $j < $N; $j++) {   $this->chessboard[$i][$j] = 0;  } } $this->has_set_x = array(); $this->has_set_y = array(); $this->has_set_site = array(); }  // 获取排列 public function getPermutation($is_get_on = true) { // is_get_on 是否获取一种排列 true:是 false:获取所有排列 $current_n = 0; // 当前设置第几个皇后 $start_x = 0;  // 当前的x坐标 从x开始放置尝试 $permutation_array = array(); // 全部皇后放置成功的排列数组 while ($current_n < $this->N && $current_n >= 0) {  $site_result = $this->setQueenSite($current_n, $start_x); // 设置皇后位置  if($site_result == true && $current_n + 1 >= $this->N) { // 如果最后的皇后位置放置成功则记录信息  $permutation_array[] = array_merge($this->has_set_site, array(array('x' => $site_result['x'], 'y' => $site_result['y'])));  if($is_get_on == false) { // 如果是获取所有排列,则设置当前放置失败,让程序回溯继续找到其他排列   $site_result = false;  }  }  if($site_result == true) {  $this->chessboard[$site_result['x']][$site_result['y']] = 1;  $this->has_set_x[] = $site_result['x'];  $this->has_set_y[] = $site_result['y'];  $this->has_set_site[] = array('x' => $site_result['x'], 'y' => $site_result['y']);  $current_n++; // 皇后位置放置成功,继续设置下一个皇后,重置下一个皇后的x坐标从0开始  $start_x = 0;  }else {  // 当前皇后找不到放置的位置,则需要回溯到上一步  $previous_site = array_pop($this->has_set_site); // 找到上一步皇后的位置  if(!empty($previous_site)) {   $start_x = $previous_site['x'] + 1; // 让上一步的皇后的x坐标+1继续尝试放置   $this->deleteArrayValue($this->has_set_x, $previous_site['x']);   $this->deleteArrayValue($this->has_set_y, $previous_site['y']);   $this->chessboard[$previous_site['x']][$previous_site['y']] = 0;  }  $current_n--; // 回溯到上一步,即让一个皇后x坐标+1继续尝试放置  } } return $permutation_array; }  // 设置皇后位置 public function setQueenSite($n, $start_x) { $start_y = $n; if($start_x >= $this->N) return false; $check_result = $this->checkQueenSite($start_x, $start_y); // 检查当前是否可放置 if($check_result == true) {  return array('x' => $start_x, 'y' => $start_y); }else { // 不可放置,则x坐标+1,继续尝试  $start_x++;  return $this->setQueenSite($n, $start_x); } }  // 检查皇后位置是否正确 public function checkQueenSite($x, $y) { // 判断当前坐标的横、纵、斜线是否存在已经放置的皇后 if(in_array($x, $this->has_set_x)) return false; if(in_array($y, $this->has_set_y)) return false; $operate_array = array(  array('operate_x' => '+', 'operate_y' => '+'),  array('operate_x' => '-', 'operate_y' => '-'),  array('operate_x' => '+', 'operate_y' => '-'),  array('operate_x' => '-', 'operate_y' => '+') ); foreach ($operate_array as $key => $value) {  $diagonal_x = $x;  $diagonal_y = $y;  while (true) {  eval("\$diagonal_x=$diagonal_x {$value['operate_x']} 1;");  eval("\$diagonal_y=$diagonal_y {$value['operate_y']} 1;");  if($diagonal_x >= $this->N || $diagonal_y >= $this->N || $diagonal_x < 0 || $diagonal_y < 0) break;  if($this->chessboard[$diagonal_x][$diagonal_y] == 1) return false;  } } return true; }  // 删除数组元素 public function deleteArrayValue(&$array, $value) { $delete_key = array_search($value, $array); array_splice($array, $delete_key, 1); } } $N = 8; // 8表示获取8皇后的排列组合$backtracking = new Backtracking($N);$permutations = $backtracking->getPermutation(false);var_dump($permutations); // 输出92种排列

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

您可能感兴趣的文章:

  • PHP基于回溯算法解决n皇后问题的方法示例
  • PHP实现基于回溯法求解迷宫问题的方法详解
  • PHP实现的回溯算法示例
  • PHP 正则表达式效率 贪婪、非贪婪与回溯分析(推荐)
  • PHP回溯法解决0-1背包问题实例分析
  • PHP正则表达式的效率 回溯与固化分组


  • 上一条:
    PHP实现百度人脸识别
    下一条:
    Mac下快速搭建PHP开发环境步骤详解
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • PHP 8.4 Alpha 1现已发布!(0个评论)
    • 用Time Warden监控PHP中的代码处理时间(0个评论)
    • 在PHP中使用array_pop + yield实现读取超大型目录功能示例(0个评论)
    • Property Hooks RFC在PHP 8.4中越来越接近现实(0个评论)
    • 近期文章
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • PHP 8.4 Alpha 1现已发布!(0个评论)
    • Laravel 11.15版本发布 - Eloquent Builder中添加的泛型(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2017-06
    • 2017-07
    • 2017-08
    • 2017-09
    • 2017-11
    • 2017-12
    • 2018-01
    • 2018-02
    • 2018-03
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2020-07
    • 2020-09
    • 2021-02
    • 2021-03
    • 2021-04
    • 2021-05
    • 2021-06
    • 2021-07
    • 2021-08
    • 2021-09
    • 2021-10
    • 2021-11
    • 2021-12
    • 2022-01
    • 2022-02
    • 2022-05
    • 2022-06
    • 2022-07
    • 2022-08
    • 2022-09
    • 2022-10
    • 2022-11
    • 2022-12
    • 2023-01
    • 2023-02
    • 2023-03
    • 2023-04
    • 2023-05
    • 2023-06
    • 2023-07
    • 2023-08
    • 2023-09
    • 2023-10
    • 2023-11
    • 2023-12
    • 2024-01
    • 2024-02
    • 2024-03
    • 2024-04
    • 2024-05
    • 2024-06
    • 2024-07
    • 2024-09
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客