侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

Python内置数据类型list各方法的性能测试过程解析

Python  /  管理员 发布于 7年前   342

这篇文章主要介绍了Python内置数据类型list各方法的性能测试过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

测试环境

本文所涉及的代码均在MacOS系统与CentOS7下测试,使用的Python版本为3.6.8。

测试模块

测试用的模块是Python内置的timeit模块:

timeit模块可以用来测试一小段Python代码的执行速度。

Timer类

class timeit.Timer(stmt='pass', setup='pass', timer=<timer function>)

Timer是测量小段代码执行速度的类。

stmt参数是要测试的代码语句(statment);

setup参数是运行代码时需要的设置;

timer参数是一个定时器函数,与平台有关。

Timer类的timeit方法

timeit.Timer.timeit(number=1000000)

Timer类中测试语句执行速度的对象方法。number参数是测试代码时的测试次数,默认为1000000次。方法返回执行代码的平均耗时,一个float类型的秒数。

列表内置方法的性能测试

我们知道,生成一个列表可以使用列表生成式或者append、insert、extend这些方法,现在我们来看一下这些方法的执行效率:

from timeit import Timerdef test_list():  lst = list(range(1000))def test_generation():  lst = [i for i in range(1000)]def test_append():  lst = []  for i in range(1000):    lst.append(i)def test_add():  lst = []  for i in range(1000):    lst += [i]# 在列表的头部insertdef test_insert_zero():  lst = []  for i in range(1000):    lst.insert(0,i)# 在列表的尾部insertdef test_insert_end():  lst = []  for i in range(1000):    lst.insert(-1,i)def test_extend():  lst = []  lst.extend(list(range(1000)))t1 = Timer("test_list()","from __main__ import test_list")print(f"test_list takes {t1.timeit(number=1000)} seconds")t2 = Timer("test_generation()","from __main__ import test_generation")print(f"test_generation takes {t2.timeit(number=1000)} seconds")t3 = Timer("test_append()","from __main__ import test_append")print(f"test_append takes {t3.timeit(number=1000)} seconds")t4 = Timer("test_add()","from __main__ import test_add")print(f"test_add takes {t4.timeit(number=1000)} seconds")t5 = Timer("test_insert_zero()","from __main__ import test_insert_zero")print(f"test_insert_zero takes {t5.timeit(number=1000)} seconds")t6 = Timer("test_insert_end()","from __main__ import test_insert_end")print(f"test_insert_end takes {t6.timeit(number=1000)} seconds")t7 = Timer("test_extend()","from __main__ import test_extend")print(f"test_extend takes {t7.timeit(number=1000)} seconds")

我们先看看在MacOS系统下,执行上面这段代码的结果:

"""test_list takes 0.012904746999993222 secondstest_generation takes 0.03530399600003875 secondstest_append takes 0.0865129750000051 secondstest_add takes 0.08066114099983679 secondstest_insert_zero takes 0.30594958500023495 secondstest_insert_end takes 0.1522782449992519 secondstest_extend takes 0.017534753999825625 seconds"""

我们可以看到:直接使用list方法强转的效率最高,其次是使用列表生成式,而append与直接加的方式紧随其后并且二者的效率相当;insert方法的执行效率最低――并且从头插入的效率要低于从尾部插入的效率!最后我们将强转的列表使用extend方法放入到新的列表中的过程效率并没有减少多少。

然后试试在Linux系统下的执行结果:

列表pop方法的性能测试

pop可以从第0各位置删除元素,也可以从最后位置删除元素(默认删除最后面的元素),现在我们来测试一下两种从不同位置删除元素的性能对比:

from timeit import Timerdef test_pop_zero():  lst = list(range(2000))  for i in range(2000):    lst.pop(0)def test_pop_end():  lst = list(range(2000))  for i in range(2000):    lst.pop()t1 = Timer("test_pop_zero()","from __main__ import test_pop_zero")print(f"test_pop_zero takes {t1.timeit(number=1000)} seconds")t2 = Timer("test_pop_end()","from __main__ import test_pop_end")print(f"test_pop_end takes {t2.timeit(number=1000)} seconds")

在MacOS下程序的执行结果为:

test_pop_zero takes 0.5015365449999081 secondstest_pop_end takes 0.22170215499954793 seconds

然后我们来试试Linux系统中的执行结果:

可以看到:从列表的尾部删除元素的效率要比从头部删除的效率高很多!

关于列表insert方法的一个小坑

如果想使用insert方法生成一个列表[0,1,2,3,4,5]的话(当然使用insert方法效率会低很多,建议使用其他的方法)会有一个这样的问题,在此记录一下:

def test_insert():  lst = []  for i in range(6):    lst.insert(-1,i)    print(lst)test_insert()

结果竟然是这样的――第一个元素竟然一直在最后!

[0][1, 0][1, 2, 0][1, 2, 3, 0][1, 2, 3, 4, 0][1, 2, 3, 4, 5, 0]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    Python StringIO如何在内存中读写str
    下一条:
    python模拟实现斗地主发牌
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客