Python实现隐马尔可夫模型的前向后向算法的示例代码
Python  /  管理员 发布于 7年前   167
本篇文章对隐马尔可夫模型的前向和后向算法进行了Python实现,并且每种算法都给出了循环和递归两种方式的实现。
循环方式
import numpy as npdef hmm_forward(Q, V, A, B, pi, T, O, p): """ :param Q: 状态集合 :param V: 观测集合 :param A: 状态转移概率矩阵 :param B: 观测概率矩阵 :param pi: 初始概率分布 :param T: 观测序列和状态序列的长度 :param O: 观测序列 :param p: 存储各个状态的前向概率的列表,初始为空 """ for t in range(T): # 计算初值 if t == 0: for i in range(len(Q)): p.append(pi[i] * B[i, V[O[0]]]) # 初值计算完毕后,进行下一时刻的递推运算 else: alpha_t_ = 0 alpha_t_t = [] for i in range(len(Q)): for j in range(len(Q)): alpha_t_ += p[j] * A[j, i] alpha_t_t.append(alpha_t_ * B[i, V[O[t]]]) alpha_t_ = 0 p = alpha_t_t return sum(p)# 《统计学习方法》书上例10.2Q = [1, 2, 3]V = {'红':0, '白':1}A = np.array([[0.5, 0.2, 0.3], [0.3, 0.5, 0.2], [0.2, 0.3, 0.5]])B = np.array([[0.5, 0.5], [0.4, 0.6], [0.7, 0.3]])pi = [0.2, 0.4, 0.4]T = 3O = ['红', '白', '红']p = []print(hmm_forward(Q, V, A, B, pi, T, O, p)) # 0.130218
递归方式
import numpy as npdef hmm_forward_(Q, V, A, B, pi, T, O, p, T_final): """ :param T_final:递归的终止条件 """ if T == 0: for i in range(len(Q)): p.append(pi[i] * B[i, V[O[0]]]) else: alpha_t_ = 0 alpha_t_t = [] for i in range(len(Q)): for j in range(len(Q)): alpha_t_ += p[j] * A[j, i] alpha_t_t.append(alpha_t_ * B[i, V[O[T]]]) alpha_t_ = 0 p = alpha_t_t if T >= T_final: return sum(p) return hmm_forward_(Q, V, A, B, pi, T+1, O, p, T_final)Q = [1, 2, 3]V = {'红':0, '白':1}A = np.array([[0.5, 0.2, 0.3], [0.3, 0.5, 0.2], [0.2, 0.3, 0.5]])B = np.array([[0.5, 0.5], [0.4, 0.6], [0.7, 0.3]])pi = [0.2, 0.4, 0.4]T = 0O = ['红', '白', '红']p = []T_final = 2 # T的长度是3,T的取值是(0时刻, 1时刻, 2时刻)print(hmm_forward_(Q, V, A, B, pi, T, O, p, T_final))
循环方式
import numpy as npdef hmm_backward(Q, V, A, B, pi, T, O, beta_t, T_final): for t in range(T, -1, -1): if t == T_final: beta_t = beta_t else: beta_t_ = 0 beta_t_t = [] for i in range(len(Q)): for j in range(len(Q)): beta_t_ += A[i, j] * B[j, V[O[t + 1]]] * beta_t[j] beta_t_t.append(beta_t_) beta_t_ = 0 beta_t = beta_t_t if t == 0: p=[] for i in range(len(Q)): p.append(pi[i] * B[i, V[O[0]]] * beta_t[i]) beta_t = p return sum(beta_t)# 《统计学习方法》课后题10.1Q = [1, 2, 3]V = {'红':0, '白':1}A = np.array([[0.5, 0.2, 0.3], [0.3, 0.5, 0.2], [0.2, 0.3, 0.5]])B = np.array([[0.5, 0.5], [0.4, 0.6], [0.7, 0.3]])pi = [0.2, 0.4, 0.4]T = 3O = ['红', '白', '红', '白']beta_t = [1, 1, 1]T_final = 3print(hmm_backward_(Q, V, A, B, pi, T, O, beta_t, T_final)) # 0.06009
递归方式
import numpy as npdef hmm_backward(Q, V, A, B, pi, T, O, beta_t, T_final): if T == T_final: beta_t = beta_t else: beta_t_ = 0 beta_t_t = [] for i in range(len(Q)): for j in range(len(Q)): beta_t_ += A[i, j] * B[j, V[O[T+1]]] * beta_t[j] beta_t_t.append(beta_t_) beta_t_ = 0 beta_t = beta_t_t if T == 0: p=[] for i in range(len(Q)): p.append(pi[i] * B[i, V[O[0]]] * beta_t[i]) beta_t = p return sum(beta_t) return hmm_backward(Q, V, A, B, pi, T-1, O, beta_t, T_final)jpgQ = [1, 2, 3]V = {'红':0, '白':1}A = np.array([[0.5, 0.2, 0.3], [0.3, 0.5, 0.2], [0.2, 0.3, 0.5]])B = np.array([[0.5, 0.5], [0.4, 0.6], [0.7, 0.3]])pi = [0.2, 0.4, 0.4]T = 3O = ['红', '白', '红', '白']beta_t = [1, 1, 1]T_final = 3print(hmm_backward_(Q, V, A, B, pi, T, O, beta_t, T_final)) # 0.06009
这里我有个问题不理解,这道题的正确答案应该是0.061328,我计算出的答案和实际有一点偏差,我跟踪了代码的计算过程,发现在第一次循环完成后,计算结果是正确的,第二次循环后的结果就出现了偏差,我怀疑是小数部分的精度造成,希望有人能给出一个更好的解答,如果是代码的问题也欢迎指正。
以上所述是小编给大家介绍的Python实现隐马尔可夫模型的前向后向算法,希望对大家有所帮助!
122 在
学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..123 在
Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..原梓番博客 在
在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..博主 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..1111 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
Copyright·© 2019 侯体宗版权所有·
粤ICP备20027696号