侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

python 普通克里金(Kriging)法的实现

Python  /  管理员 发布于 7年前   183

克里金法时一种用于空间插值的地学统计方法。

克里金法用半变异测定空间要素,要素即自相关要素。

半变异公式为:

其中γ(h) 是已知点 xi 和 xj 的半变异,***h***表示这两个点之间的距离,z是属性值。

假设不存在漂移,普通克里金法重点考虑空间相关因素,并用拟合的半变异直接进行插值。

估算某测量点z值的通用方程为:


式中,z0是待估计值,zx是已知点x的值,Wx是每个已知点关联的权重,s是用于估计的已知点数目。
权重可以由一组矩阵方程得到。


此程序对半变异进行拟合时采用的时最简单的正比例函数拟合

数据为csv格式

保存格式如下:

第一行为第一个点以此类推

最后一行是待求点坐标,其中z为未知值,暂且假设为0


代码如下:

import numpy as npfrom math import*from numpy.linalg import *h_data=np.loadtxt(open('高程点数据.csv'),delimiter=",",skiprows=0)print('原始数据如下(x,y,z):\n未知点高程初值设为0\n',h_data)def dis(p1,p2): a=pow((pow((p1[0]-p2[0]),2)+pow((p1[1]-p2[1]),2)),0.5) return adef rh(z1,z2): r=1/2*pow((z1[2]-z2[2]),2) return rdef proportional(x,y): xx,xy=0,0 for i in range(len(x)):  xx+=pow(x[i],2)  xy+=x[i]*y[i] k=xy/xx return kr=[];pp=[];p=[];for i in range(len(h_data)): pp.append(h_data[i])for i in range(len(pp)): for j in range(len(pp)):  p.append(dis(pp[i],pp[j]))  r.append(rh(pp[i],pp[j]))r=np.array(r).reshape(len(h_data),len(h_data))r=np.delete(r,len(h_data)-1,axis =0)r=np.delete(r,len(h_data)-1,axis =1)h=np.array(p).reshape(len(h_data),len(h_data))h=np.delete(h,len(h_data)-1,axis =0)oh=h[:,len(h_data)-1]h=np.delete(h,len(h_data)-1,axis =1)hh=np.triu(h,0)rr=np.triu(r,0)r0=[];h0=[];for i in range(len(h_data)-1): for j in range(len(h_data)-1):  if hh[i][j] !=0:   a=h[i][j]   h0.append(a)  if rr[i][j] !=0:   a=rr[i][j]   r0.append(a)k=proportional(h0,r0)hnew=h*ka2=np.ones((1,len(h_data)-1))a1=np.ones((len(h_data)-1,1))a1=np.r_[a1,[[0]]]hnew=np.r_[hnew,a2]hnew=np.c_[hnew,a1]print('半方差联立矩阵:\n',hnew)oh=np.array(k*oh)oh=np.r_[oh,[1]]w=np.dot(inv(hnew),oh)print('权阵运算结果:\n',w)z0,s2=0,0for i in range(len(h_data)-1): z0=w[i]*h_data[i][2]+z0 s2=w[i]*oh[i]+s2s2=s2+w[len(h_data)-1]print('未知点高程值为:\n',z0)print('半变异值为:\n',pow(s2,0.5))input()

运算结果

python初学,为了完成作业写了个小程序来帮助计算,因为初学知识有限,有很多地方写的很复杂,可以优化的地方很多。 还望读者谅解,欢迎斧正谢谢!

参考文献:
【1】(美)张康聪 著;陈健飞等译. 地理信息系统导论(第三版). 北京:清华大学出版社, 2009.04.

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    Python使用pymysql模块操作mysql增删改查实例分析
    下一条:
    Python函数参数类型及排序原理总结
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客