Python实现word2Vec model过程解析
Python  /  管理员 发布于 7年前   198
这篇文章主要介绍了Python实现word2Vec model过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
import gensim, logging, oslogging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)import nltkcorpus = nltk.corpus.brown.sents()fname = 'brown_skipgram.model'if os.path.exists(fname): # load the file if it has already been trained, to save repeating the slow training step below model = gensim.models.Word2Vec.load(fname)else: # can take a few minutes, grab a cuppa model = gensim.models.Word2Vec(corpus, size=100, min_count=5, workers=2, iter=50) model.save(fname)words = "woman women man girl boy green blue".split()for w1 in words: for w2 in words: print(w1, w2, model.similarity(w1, w2))print(model.most_similar(positive=['woman', ''], topn=1))print(model.similarity('woman', 'girl'))girl
在gensim模块中已经封装了13年提出的model--word2vec,所以我们直接开始建立模型
这是建立模型的过程,最后会出现saving Word2vec的语句,代表已经成功建立了模型
这是输入了 gorvement和news关键词后 所反馈的词语 --- administration, 他们之间的相关性是0.508
当我在输入 women 和 man ,他们显示的相关性的0.638 ,已经是非常高的一个数字。
值得一提的是,我用的语料库是直接从nltk里的brown语料库。其中大概包括了一些新闻之类的数据。
大家如果感兴趣的话,可以自己建立该模型,通过传入不同的语料库,来calc 一些term的 相关性噢
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
122 在
学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..123 在
Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..原梓番博客 在
在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..博主 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..1111 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
Copyright·© 2019 侯体宗版权所有·
粤ICP备20027696号