侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

python实现高斯判别分析算法的例子

Python  /  管理员 发布于 7年前   212

高斯判别分析算法(Gaussian discriminat analysis)

高斯判别算法是一个典型的生成学习算法(关于生成学习算法可以参考我的另外一篇博客)。在这个算法中,我们假设p(x|y)p(x|y)服从多元正态分布。

注:在判别学习算法中,我们假设p(y|x)p(y|x)服从一维正态分布,这个很好类比,因为在模型中输入数据XX通常是拥有很多维度的,所以对于XX的条件概率建模时要取多维正态分布。

多元正态分布

多元正态分布也叫多元高斯分布,这个分布的两个参数分别是平均向量μ∈Rnμ∈Rn和一个协方差矩阵∑∈Rn×n∑∈Rn×n

关于协方差矩阵的定义;假设XX是由nn个标量随机变量组成的列向量,并且μkμk是第kk个元素的期望值,即μk=E(Xk)μk=E(Xk),那么协方差矩阵被定义为

下面是一些二维高斯分布的概率密度图像:

最右边的图像展现的二维高斯分布的均值是零向量(2x1的零向量),协方差矩阵Σ=IΣ=I(2x2的单位矩阵),像这样以零向量为均值以单位阵为协方差的多维高斯分布称为标准正态分布,中间的图像以零向量为均值,Σ=0.6IΣ=0.6I;最右边的图像中Σ=2IΣ=2I,观察发现当ΣΣ越大时,高斯分布越“铺开”,当ΣΣ越小时,高斯分布越“收缩”。

让我们看一些其他例子对比发现规律

上图中展示的三个高斯分布对应的均值均为零向量,协方差矩阵分别对应与下面三个

最左边的图像是我们熟悉的标准二维正态分布,然后我们观察到当我们增加ΣΣ的非主对角元素时,概率密度图像沿着45°线(x1=x2x1=x2)“收缩”,从对应的等高线轮廓图可以跟清楚的看到这一点:

通过对比右边和中间的两幅图发现,通过减少主对角元素可以让概率密度图像变得“收缩”,不过是在相反的方向上。

高斯判别分析模型

当我们处理输入特征是连续随机变量xx时的分类问题时,我们可以使用高斯判别分析模型(GDA),用多元正态分布模型来描述p(x|y)p(x|y),模型的具体数学表达式是这样的:

通过最大化似然函数ll可以得到上面四个参数的估计值:

我们用图像直观的描述一下算法处理的结果:

python的实现demo 如下:

第57的高斯概率密度函数用矩阵运算写有bug没跑通,又因为实验数据只有二维,于是在纸上对上文中矩阵运算公式进行了化简至最后结果写在了函数里。如有疑问可以拿出笔来演算一下。

#GDA#author:Xiaolewenimport matplotlib.pyplot as pltfrom numpy import *#Randomly generate two cluster data of Gaussian distributionsmean0=[2,3]cov=mat([[1,0],[0,2]])x0=random.multivariate_normal(mean0,cov,500).T #The first class point which labael equal 0y0=zeros(shape(x0)[1])#print x0,y0mean1=[7,8]cov=mat([[1,0],[0,2]])x1=random.multivariate_normal(mean1,cov,300).Ty1=ones(shape(x1)[1]) #The second class point which label equals 1#print x1,y1x=array([concatenate((x0[0],x1[0])),concatenate((x0[1],x1[1]))])y=array([concatenate((y0,y1))])m=shape(x)[1]#print x,y,m#Caculate the parameters:\phi,\u0,\u1,\Sigmaphi=(1.0/m)*len(y1)#print phiu0=mean(x0,axis=1) #print u0u1=mean(x1,axis=1)#print u1xplot0=x0;xplot1=x1 #save the original data to plot x0=x0.T;x1=x1.T;x=x.T#print x0,x1,xx0_sub_u0=x0-u0x1_sub_u1=x1-u1#print x0_sub_u0#print x1_sub_u1x_sub_u=concatenate([x0_sub_u0,x1_sub_u1])#print x_sub_ux_sub_u=mat(x_sub_u)#print x_sub_usigma=(1.0/m)*(x_sub_u.T*x_sub_u)#print sigma#plot the discriminate boundary ,use the u0_u1's midnormalmidPoint=[(u0[0]+u1[0])/2.0,(u0[1]+u1[1])/2.0]#print midPointk=(u1[1]-u0[1])/(u1[0]-u0[0])#print kx=range(-2,11)y=[(-1.0/k)*(i-midPoint[0])+midPoint[1] for i in x]#plot contour for two gaussian distributionsdef gaussian_2d(x, y, x0, y0, sigmaMatrix): return exp(-0.5*((x-x0)**2+0.5*(y-y0)**2))delta = 0.025xgrid0=arange(-2, 6, delta)ygrid0=arange(-2, 6, delta)xgrid1=arange(3,11,delta)ygrid1=arange(3,11,delta)X0,Y0=meshgrid(xgrid0, ygrid0) #generate the gridX1,Y1=meshgrid(xgrid1,ygrid1)Z0=gaussian_2d(X0,Y0,2,3,cov)Z1=gaussian_2d(X1,Y1,7,8,cov)#plot the figure and add commentsplt.figure(1)plt.clf()plt.plot(xplot0[0],xplot0[1],'ko')plt.plot(xplot1[0],xplot1[1],'gs')plt.plot(u0[0],u0[1],'rx',markersize=20)plt.plot(u1[0],u1[1],'y*',markersize=20)plt.plot(x,y)CS0=plt.contour(X0, Y0, Z0)plt.clabel(CS0, inline=1, fontsize=10)CS1=plt.contour(X1,Y1,Z1)plt.clabel(CS1, inline=1, fontsize=10)plt.title("Gaussian discriminat analysis")plt.xlabel('Feature Dimension (0)')plt.ylabel('Feature Dimension (1)')plt.show(1)

这是最终的拟合结果:

以上这篇python实现高斯判别分析算法的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


  • 上一条:
    在python中做正态性检验示例
    下一条:
    Pycharm使用远程linux服务器conda/python环境在本地运行的方法(图解))
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客