python实现在多维数组中挑选符合条件的全部元素
Python  /  管理员 发布于 7年前   181
问题产生:今天在编写神经网络的Cluster作业时,需要根据根据数据标签用不同的颜色画出数据的分布情况,由此学习到了这种高效的方法。
传统思路:用for循环来挑选符合条件的元素,这样十分浪费时间。
代码示例:
from sklearn.datasets.samples_generator import make_blobsimport numpy as npimport matplotlib.pyplot as plt#product 20 samples and divide them in 4 different typesX, label_true = make_blobs(n_samples=20,centers=4)print("Data:{:}".format(X))print("label_true:{:}".format(label_true))#eliminate the repeated elementslabels=np.unique(label_true)print("labels:{:}".format(labels))#plotfig = plt.figure()ax = fig.add_subplot(1, 1, 1)colors = 'rgbycm'for index,elem in enumerate(labels): position=label_true==elem print("position{:}:{:}".format(index,position)) plt.scatter(X[position,0],X[position,1],label="cluster %d"%elem,color=colors[index%len(colors)])plt.show()
实验结果:
Data:[[ 6.28987299 1.19041843] [ 2.12673463 -1.90647309] [-8.56276424 1.8136798 ] [ 2.42611937 -3.81970786] [ 1.83488662 -3.10733306] [ 6.28320138 -0.24840258] [-6.74802304 1.13642657] [ 2.21681643 6.28894411] [-7.16100601 0.04482262] [ 1.66858847 3.42225284] [ 3.19972789 4.58804196] [-7.37006942 0.57068008] [ 0.52465584 -2.68794047] [ 2.71075921 3.57281778] [ 5.99343237 0.0120798 ] [ 4.28307033 4.28727222] [ 0.73714246 -2.38643522] [ 5.58384782 -0.62066592] [-8.44295576 -0.05933983] [ 5.33991984 1.24833992]]label_true:[0 2 1 2 2 0 1 3 1 3 3 1 2 3 0 3 2 0 1 0]labels:[0 1 2 3]position0:[ True False False False False True False False False False False False False False True False False True False True]position1:[False False True False False False True False True False False True False False False False False False True False]position2:[False True False True True False False False False False False False True False False False True False False False]position3:[False False False False False False False True False True True False False True False True False False False False]
结果分析:
我们可以看出黄色部分的作用,第一行 position=label_true==elem 的作用是让position在label_true==elem的位置置为True,反之为False,从而得到的position是一个True和False的集合,
而第三行 X[position,0],X[position,1] 就是选择为True的位置上的横坐标和纵坐标,打印出来。还有点懵?我们用最简单的数组来表示
代码示例
import numpy as npa=np.empty(shape=[0,4], dtype=int)a=np.append(a,[[1,2,3,4],[2,3,4,5],[7,8,9,10]],axis=0)position=[True,False,True]print(a)print(a[position,3])
结果:
[[ 1 2 3 4] [ 2 3 4 5] [ 7 8 9 10]][ 4 10]
结果分析:
显然这是一个3行4列的矩阵,我们用position得到的是[a[0],a[2]],然后取a[0]和a[2]的第4个元素,则为4和10.
是不是比用for快多了~~
以上这篇python实现在多维数组中挑选符合条件的全部元素就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
122 在
学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..123 在
Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..原梓番博客 在
在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..博主 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..1111 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
Copyright·© 2019 侯体宗版权所有·
粤ICP备20027696号