侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

详解Python可视化神器Yellowbrick使用

Python  /  管理员 发布于 7年前   277

机器学习中非常重要的一环就是数据的可视化分析,从源数据的可视化到结果数据的可视化都离不开可视化工具的使用,sklearn+matplotlib的组合在日常的工作中已经满足了绝对大多数的需求,今天主要介绍的是一个基于sklearn和matplotlib模块进行扩展的可视化工具Yellowbrick。

Yellowbrick的官方文档在这里。Yellowbrick是由一套被称为"Visualizers"组成的可视化诊断工具组成的套餐,其由Scikit-Learn API延伸而来,对模型选择过程其指导作用。总之,Yellowbrick结合了Scikit-Learn和Matplotlib并且最好得传承了Scikit-Learn文档,对 你的 模型进行可视化!

Yellowbrick主要包含的组件如下:

VisualizersVisualizers也是estimators(从数据中习得的对象),其主要任务是产生可对模型选择过程有更深入了解的视图。从Scikit-Learn来看,当可视化数据空间或者封装一个模型estimator时,其和转换器(transformers)相似,就像"ModelCV" (比如 RidgeCV, LassoCV )的工作原理一样。Yellowbrick的主要目标是创建一个和Scikit-Learn类似的有意义的API。其中最受欢迎的visualizers包括: 特征可视化Rank Features: 对单个或者两两对应的特征进行排序以检测其相关性Parallel Coordinates: 对实例进行水平视图Radial Visualization: 在一个圆形视图中将实例分隔开PCA Projection: 通过主成分将实例投射Feature Importances: 基于它们在模型中的表现对特征进行排序Scatter and Joint Plots: 用选择的特征对其进行可视化分类可视化Class Balance: 看类的分布怎样影响模型Classification Report: 用视图的方式呈现精确率,召回率和F1值ROC/AUC Curves: 特征曲线和ROC曲线子下的面积Confusion Matrices: 对分类决定进行视图描述回归可视化Prediction Error Plot: 沿着目标区域对模型进行细分Residuals Plot: 显示训练数据和测试数据中残差的差异Alpha Selection: 显示不同alpha值选择对正则化的影响聚类可视化K-Elbow Plot: 用肘部法则或者其他指标选择k值Silhouette Plot: 通过对轮廓系数值进行视图来选择k值文本可视化Term Frequency: 对词项在语料库中的分布频率进行可视化t-SNE Corpus Visualization: 用随机邻域嵌入来投射文档

这里以癌症数据集为例绘制ROC曲线,如下:

def testFunc1(savepath='Results/breast_cancer_ROCAUC.png'): ''' 基于癌症数据集的测试 ''' data=load_breast_cancer() X,y=data['data'],data['target'] X_train, X_test, y_train, y_test = train_test_split(X, y) viz=ROCAUC(LogisticRegression()) viz.fit(X_train, y_train) viz.score(X_test, y_test) viz.poof(outpath=savepath)

结果如下:

结果看起来也是挺美观的。

之后用平行坐标的方法对高维数据进行作图,数据集同上:

def testFunc2(savepath='Results/breast_cancer_ParallelCoordinates.png'): ''' 用平行坐标的方法对高维数据进行作图 ''' data=load_breast_cancer() X,y=data['data'],data['target'] print 'X_shape: ',X.shape #X_shape: (569L, 30L) visualizer=ParallelCoordinates() visualizer.fit_transform(X,y) visualizer.poof(outpath=savepath)

结果如下:

这个最初没有看明白什么意思,其实就是高维特征数据的可视化分析,这个功能还可以对原始数据进行采样,之后再绘图。

基于癌症数据集,使用逻辑回归模型来分类,绘制分类报告

def testFunc3(savepath='Results/breast_cancer_LR_report.png'): ''' 基于癌症数据集,使用逻辑回归模型来分类,绘制分类报告 ''' data=load_breast_cancer() X,y=data['data'],data['target'] model=LogisticRegression() visualizer=ClassificationReport(model) X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=42) visualizer.fit(X_train,y_train) visualizer.score(X_test,y_test) visualizer.poof(outpath=savepath)

结果如下:


这样的结果展现方式还是比较美观的,在使用的时候发现了这个模块的一个不足的地方,就是:如果连续绘制两幅图片的话,第一幅图片就会累加到第二幅图片中去,多幅图片绘制亦是如此,在matplotlib中可以使用plt.clf()方法来清除上一幅图片,这里没有找到对应的API,希望有找到的朋友告知一下。

接下来基于共享单车数据集进行租借预测,具体如下:

首先基于特征对相似度分析方法来分析共享单车数据集中两两特征之间的相似度

def testFunc5(savepath='Results/bikeshare_Rank2D.png'): ''' 共享单车数据集预测 ''' data=pd.read_csv('bikeshare/bikeshare.csv') X=data[["season", "month", "hour", "holiday", "weekday", "workingday",   "weather", "temp", "feelslike", "humidity", "windspeed"   ]] y=data["riders"] visualizer=Rank2D(algorithm="pearson") visualizer.fit_transform(X) visualizer.poof(outpath=savepath)

基于线性回归模型实现预测分析

def testFunc7(savepath='Results/bikeshare_LinearRegression_ResidualsPlot.png'): ''' 基于共享单车数据使用线性回归模型预测 ''' data = pd.read_csv('bikeshare/bikeshare.csv') X=data[["season", "month", "hour", "holiday", "weekday", "workingday",   "weather", "temp", "feelslike", "humidity", "windspeed"]] y=data["riders"] X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3) visualizer=ResidualsPlot(LinearRegression()) visualizer.fit(X_train, y_train) visualizer.score(X_test, y_test) visualizer.poof(outpath=savepath)

结果如下:

基于共享单车数据使用AlphaSelection

def testFunc8(savepath='Results/bikeshare_RidgeCV_AlphaSelection.png'): ''' 基于共享单车数据使用AlphaSelection ''' data=pd.read_csv('bikeshare/bikeshare.csv') X=data[["season", "month", "hour", "holiday", "weekday", "workingday",   "weather", "temp", "feelslike", "humidity", "windspeed"]] y=data["riders"] alphas=np.logspace(-10, 1, 200) visualizer=AlphaSelection(RidgeCV(alphas=alphas)) visualizer.fit(X, y) visualizer.poof(outpath=savepath)

结果如下:

基于共享单车数据绘制预测错误图

def testFunc9(savepath='Results/bikeshare_Ridge_PredictionError.png'): ''' 基于共享单车数据绘制预测错误图 ''' data=pd.read_csv('bikeshare/bikeshare.csv') X=data[["season", "month", "hour", "holiday", "weekday", "workingday",   "weather", "temp", "feelslike", "humidity", "windspeed"]] y=data["riders"] X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3) visualizer=PredictionError(Ridge(alpha=3.181)) visualizer.fit(X_train, y_train) visualizer.score(X_test, y_test) visualizer.poof(outpath=savepath)blog.csdn.net/Together_CZ/article/details/86640784

结果如下:

今天先记录到这里,之后有时间继续更新学习!

总结

以上所述是小编给大家介绍的Python可视化神器Yellowbrick使用,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!


  • 上一条:
    Python序列化与反序列化pickle用法实例
    下一条:
    详解Python中打乱列表顺序random.shuffle()的使用方法
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客