侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

浅析Python+OpenCV使用摄像头追踪人脸面部血液变化实现脉搏评估

Python  /  管理员 发布于 7年前   169

使用摄像头追踪人脸由于血液流动引起的面部色素的微小变化实现实时脉搏评估。

效果如下(演示视频):

 由于这是通过比较面部色素的变化评估脉搏所以光线、人体移动、不同角度、不同电脑摄像头等因素均会影响评估效果,实验原理是面部色素对比,识别效果存在一定误差,各位小伙伴且当娱乐,代码如下:

import cv2import numpy as npimport dlibimport timefrom scipy import signal# ConstantsWINDOW_TITLE = 'Pulse Observer'BUFFER_MAX_SIZE = 500  # Number of recent ROI average values to storeMAX_VALUES_TO_GRAPH = 50 # Number of recent ROI average values to show in the pulse graphMIN_HZ = 0.83  # 50 BPM - minimum allowed heart rateMAX_HZ = 3.33  # 200 BPM - maximum allowed heart rateMIN_FRAMES = 100 # Minimum number of frames required before heart rate is computed. Higher values are slower, but     # more accurate.DEBUG_MODE = False# Creates the specified Butterworth filter and applies it.def butterworth_filter(data, low, high, sample_rate, order=5): nyquist_rate = sample_rate * 0.5 low /= nyquist_rate high /= nyquist_rate b, a = signal.butter(order, [low, high], btype='band') return signal.lfilter(b, a, data)# Gets the region of interest for the forehead.def get_forehead_roi(face_points): # Store the points in a Numpy array so we can easily get the min and max for x and y via slicing points = np.zeros((len(face_points.parts()), 2)) for i, part in enumerate(face_points.parts()):  points[i] = (part.x, part.y) min_x = int(points[21, 0]) min_y = int(min(points[21, 1], points[22, 1])) max_x = int(points[22, 0]) max_y = int(max(points[21, 1], points[22, 1])) left = min_x right = max_x top = min_y - (max_x - min_x) bottom = max_y * 0.98 return int(left), int(right), int(top), int(bottom)# Gets the region of interest for the nose.def get_nose_roi(face_points): points = np.zeros((len(face_points.parts()), 2)) for i, part in enumerate(face_points.parts()):  points[i] = (part.x, part.y) # Nose and cheeks min_x = int(points[36, 0]) min_y = int(points[28, 1]) max_x = int(points[45, 0]) max_y = int(points[33, 1]) left = min_x right = max_x top = min_y + (min_y * 0.02) bottom = max_y + (max_y * 0.02) return int(left), int(right), int(top), int(bottom)# Gets region of interest that includes forehead, eyes, and nose.# Note: Combination of forehead and nose performs better. This is probably because this ROI includes eyes,# and eye blinking adds noise.def get_full_roi(face_points): points = np.zeros((len(face_points.parts()), 2)) for i, part in enumerate(face_points.parts()):  points[i] = (part.x, part.y) # Only keep the points that correspond to the internal features of the face (e.g. mouth, nose, eyes, brows). # The points outlining the jaw are discarded. min_x = int(np.min(points[17:47, 0])) min_y = int(np.min(points[17:47, 1])) max_x = int(np.max(points[17:47, 0])) max_y = int(np.max(points[17:47, 1])) center_x = min_x + (max_x - min_x) / 2 left = min_x + int((center_x - min_x) * 0.15) right = max_x - int((max_x - center_x) * 0.15) top = int(min_y * 0.88) bottom = max_y return int(left), int(right), int(top), int(bottom)def sliding_window_demean(signal_values, num_windows): window_size = int(round(len(signal_values) / num_windows)) demeaned = np.zeros(signal_values.shape) for i in range(0, len(signal_values), window_size):  if i + window_size > len(signal_values):   window_size = len(signal_values) - i  curr_slice = signal_values[i: i + window_size]  if DEBUG_MODE and curr_slice.size == 0:   print ('Empty Slice: size={0}, i={1}, window_size={2}'.format(signal_values.size, i, window_size))   print (curr_slice)  demeaned[i:i + window_size] = curr_slice - np.mean(curr_slice) return demeaned# Averages the green values for two arrays of pixelsdef get_avg(roi1, roi2): roi1_green = roi1[:, :, 1] roi2_green = roi2[:, :, 1] avg = (np.mean(roi1_green) + np.mean(roi2_green)) / 2.0 return avg# Returns maximum absolute value from a listdef get_max_abs(lst): return max(max(lst), -min(lst))# Draws the heart rate graph in the GUI window.def draw_graph(signal_values, graph_width, graph_height): graph = np.zeros((graph_height, graph_width, 3), np.uint8) scale_factor_x = float(graph_width) / MAX_VALUES_TO_GRAPH # Automatically rescale vertically based on the value with largest absolute value max_abs = get_max_abs(signal_values) scale_factor_y = (float(graph_height) / 2.0) / max_abs midpoint_y = graph_height / 2 for i in range(0, len(signal_values) - 1):  curr_x = int(i * scale_factor_x)  curr_y = int(midpoint_y + signal_values[i] * scale_factor_y)  next_x = int((i + 1) * scale_factor_x)  next_y = int(midpoint_y + signal_values[i + 1] * scale_factor_y)  cv2.line(graph, (curr_x, curr_y), (next_x, next_y), color=(0, 255, 0), thickness=1) return graph# Draws the heart rate text (BPM) in the GUI window.def draw_bpm(bpm_str, bpm_width, bpm_height): bpm_display = np.zeros((bpm_height, bpm_width, 3), np.uint8) bpm_text_size, bpm_text_base = cv2.getTextSize(bpm_str, fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=2.7, thickness=2) bpm_text_x = int((bpm_width - bpm_text_size[0]) / 2) bpm_text_y = int(bpm_height / 2 + bpm_text_base) cv2.putText(bpm_display, bpm_str, (bpm_text_x, bpm_text_y), fontFace=cv2.FONT_HERSHEY_DUPLEX,    fontScale=2.7, color=(0, 255, 0), thickness=2) bpm_label_size, bpm_label_base = cv2.getTextSize('BPM', fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=0.6,  thickness=1) bpm_label_x = int((bpm_width - bpm_label_size[0]) / 2) bpm_label_y = int(bpm_height - bpm_label_size[1] * 2) cv2.putText(bpm_display, 'BPM', (bpm_label_x, bpm_label_y),    fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=0.6, color=(0, 255, 0), thickness=1) return bpm_display# Draws the current frames per second in the GUI window.def draw_fps(frame, fps): cv2.rectangle(frame, (0, 0), (100, 30), color=(0, 0, 0), thickness=-1) cv2.putText(frame, 'FPS: ' + str(round(fps, 2)), (5, 20), fontFace=cv2.FONT_HERSHEY_PLAIN,    fontScale=1, color=(0, 255, 0)) return frame# Draw text in the graph areadef draw_graph_text(text, color, graph_width, graph_height): graph = np.zeros((graph_height, graph_width, 3), np.uint8) text_size, text_base = cv2.getTextSize(text, fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1, thickness=1) text_x = int((graph_width - text_size[0]) / 2) text_y = int((graph_height / 2 + text_base)) cv2.putText(graph, text, (text_x, text_y), fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=1, color=color,    thickness=1) return graph# Calculate the pulse in beats per minute (BPM)def compute_bpm(filtered_values, fps, buffer_size, last_bpm): # Compute FFT fft = np.abs(np.fft.rfft(filtered_values)) # Generate list of frequencies that correspond to the FFT values freqs = fps / buffer_size * np.arange(buffer_size / 2 + 1) # Filter out any peaks in the FFT that are not within our range of [MIN_HZ, MAX_HZ] # because they correspond to impossible BPM values. while True:  max_idx = fft.argmax()  bps = freqs[max_idx]  if bps < MIN_HZ or bps > MAX_HZ:   if DEBUG_MODE:    print ('BPM of {0} was discarded.'.format(bps * 60.0))   fft[max_idx] = 0  else:   bpm = bps * 60.0   break # It's impossible for the heart rate to change more than 10% between samples, # so use a weighted average to smooth the BPM with the last BPM. if last_bpm > 0:  bpm = (last_bpm * 0.9) + (bpm * 0.1) return bpmdef filter_signal_data(values, fps): # Ensure that array doesn't have infinite or NaN values values = np.array(values) np.nan_to_num(values, copy=False) # Smooth the signal by detrending and demeaning detrended = signal.detrend(values, type='linear') demeaned = sliding_window_demean(detrended, 15) # Filter signal with Butterworth bandpass filter filtered = butterworth_filter(demeaned, MIN_HZ, MAX_HZ, fps, order=5) return filtered# Get the average value for the regions of interest. Will also draw a green rectangle around# the regions of interest, if requested.def get_roi_avg(frame, view, face_points, draw_rect=True): # Get the regions of interest. fh_left, fh_right, fh_top, fh_bottom = get_forehead_roi(face_points) nose_left, nose_right, nose_top, nose_bottom = get_nose_roi(face_points) # Draw green rectangles around our regions of interest (ROI) if draw_rect:  cv2.rectangle(view, (fh_left, fh_top), (fh_right, fh_bottom), color=(0, 255, 0), thickness=2)  cv2.rectangle(view, (nose_left, nose_top), (nose_right, nose_bottom), color=(0, 255, 0), thickness=2) # Slice out the regions of interest (ROI) and average them fh_roi = frame[fh_top:fh_bottom, fh_left:fh_right] nose_roi = frame[nose_top:nose_bottom, nose_left:nose_right] return get_avg(fh_roi, nose_roi)# Main function.def run_pulse_observer(detector, predictor, webcam, window): roi_avg_values = [] graph_values = [] times = [] last_bpm = 0 graph_height = 200 graph_width = 0 bpm_display_width = 0 # cv2.getWindowProperty() returns -1 when window is closed by user. while cv2.getWindowProperty(window, 0) == 0:  ret_val, frame = webcam.read()  # ret_val == False if unable to read from webcam  if not ret_val:   print ("ERROR: Unable to read from webcam. Was the webcam disconnected? Exiting.")   shut_down(webcam)  # Make copy of frame before we draw on it. We'll display the copy in the GUI.  # The original frame will be used to compute heart rate.  view = np.array(frame)  # Heart rate graph gets 75% of window width. BPM gets 25%.  if graph_width == 0:   graph_width = int(view.shape[1] * 0.75)   if DEBUG_MODE:    print ('Graph width = {0}'.format(graph_width))  if bpm_display_width == 0:   bpm_display_width = view.shape[1] - graph_width  # Detect face using dlib  faces = detector(frame, 0)  if len(faces) == 1:   face_points = predictor(frame, faces[0])   roi_avg = get_roi_avg(frame, view, face_points, draw_rect=True)   roi_avg_values.append(roi_avg)   times.append(time.time())   # Buffer is full, so pop the value off the top to get rid of it   if len(times) > BUFFER_MAX_SIZE:    roi_avg_values.pop(0)    times.pop(0)   curr_buffer_size = len(times)   # Don't try to compute pulse until we have at least the min. number of frames   if curr_buffer_size > MIN_FRAMES:    # Compute relevant times    time_elapsed = times[-1] - times[0]    fps = curr_buffer_size / time_elapsed # frames per second    # Clean up the signal data    filtered = filter_signal_data(roi_avg_values, fps)    graph_values.append(filtered[-1])    if len(graph_values) > MAX_VALUES_TO_GRAPH:     graph_values.pop(0)    # Draw the pulse graph    graph = draw_graph(graph_values, graph_width, graph_height)    # Compute and display the BPM    bpm = compute_bpm(filtered, fps, curr_buffer_size, last_bpm)    bpm_display = draw_bpm(str(int(round(bpm))), bpm_display_width, graph_height)    last_bpm = bpm    # Display the FPS    if DEBUG_MODE:     view = draw_fps(view, fps)   else:    # If there's not enough data to compute HR, show an empty graph with loading text and    # the BPM placeholder    pct = int(round(float(curr_buffer_size) / MIN_FRAMES * 100.0))    loading_text = 'Computing pulse: ' + str(pct) + '%'    graph = draw_graph_text(loading_text, (0, 255, 0), graph_width, graph_height)    bpm_display = draw_bpm('--', bpm_display_width, graph_height)  else:   # No faces detected, so we must clear the lists of values and timestamps. Otherwise there will be a gap   # in timestamps when a face is detected again.   del roi_avg_values[:]   del times[:]   graph = draw_graph_text('No face detected', (0, 0, 255), graph_width, graph_height)   bpm_display = draw_bpm('--', bpm_display_width, graph_height)  graph = np.hstack((graph, bpm_display))  view = np.vstack((view, graph))  cv2.imshow(window, view)  key = cv2.waitKey(1)  # Exit if user presses the escape key  if key == 27:   shut_down(webcam)# Clean updef shut_down(webcam): webcam.release() cv2.destroyAllWindows() exit(0)def main(): detector = dlib.get_frontal_face_detector() # Predictor pre-trained model can be downloaded from: # http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2 try:  predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat') except RuntimeError as e:  print ('ERROR: \'shape_predictor_68_face_landmarks.dat\' was not found in current directory. ' \    'Download it from http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2')  return webcam = cv2.VideoCapture(0) if not webcam.isOpened():  print ('ERROR: Unable to open webcam. Verify that webcam is connected and try again. Exiting.')  webcam.release()  return cv2.namedWindow(WINDOW_TITLE) run_pulse_observer(detector, predictor, webcam, WINDOW_TITLE) # run_pulse_observer() returns when the user has closed the window. Time to shut down. shut_down(webcam)if __name__ == '__main__': main()

总结

以上所述是小编给大家介绍的浅析Python+OpenCV使用摄像头追踪人脸面部血液变化实现脉搏评估,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!


  • 上一条:
    Python with关键字,上下文管理器,@contextmanager文件操作示例
    下一条:
    Python 3.8正式发布重要新功能一览
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • PHP 8.4 Alpha 1现已发布!(0个评论)
    • Laravel 11.15版本发布 - Eloquent Builder中添加的泛型(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客