侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

用python生成与调用cntk模型代码演示方法

Python  /  管理员 发布于 7年前   184

由于一些原因,视频录制要告一段落了。再写一篇关于cntk的文章分享出来吧。我也很想将这个事情进行下去。以后如果条件允许还会接着做。

cntk2.0框架生成的模型才可以支持python。1.0不支持。

python可以导入cntk.exe生成的框架,也可以导入python调用cntk生成的框架。举两个例子:

1 、导入cntk.exe生成的框架。

from cntk.ops.functions import load_modelfrom PIL import Image import numpy as npfrom sklearn.utils import shufflenp.random.seed(0)def generate(N, mean, cov, diff):    #import ipdb;ipdb.set_trace()  samples_per_class = int(N/2)  X0 = np.random.multivariate_normal(mean, cov, samples_per_class)  Y0 = np.zeros(samples_per_class)  for ci, d in enumerate(diff):    X1 = np.random.multivariate_normal(mean+d, cov, samples_per_class)    Y1 = (ci+1)*np.ones(samples_per_class)    X0 = np.concatenate((X0,X1))    Y0 = np.concatenate((Y0,Y1))  X, Y = shuffle(X0, Y0)  return X,Ymean = np.random.randn(2)cov = np.eye(2) features, labels = generate(6, mean, cov, [[3.0], [3.0, 0.0]])features= features.astype(np.float32) labels= labels.astype(np.int) print(features)print(labels)z = load_model("MC.dnn")print(z.parameters[0].value)print(z.parameters[0])print(z)print(z.uid)#print(z.signature)#print(z.layers[0].E.shape)#print(z.layers[2].b.value)for index in range(len(z.inputs)):   print("Index {} for input: {}.".format(index, z.inputs[index]))for index in range(len(z.outputs)):   print("Index {} for output: {}.".format(index, z.outputs[index].name))import cntk as ctz_out = ct.combine([z.outputs[2].owner])predictions = np.squeeze(z_out.eval({z_out.arguments[0]:[features]}))ret = list()for t in predictions:  ret.append(np.argmax(t))top_class = np.argmax(predictions)print(ret)print("predictions{}.top_class{}".format(predictions,top_class)) 

上述的代码生成一个.py文件。放到3分类例子中,跟模型一个文件夹下(需要预先用cntk.exe生成模型)。CNTK-2.0.beta15.0\CNTK-2.0.beta15.0\Tutorials\HelloWorld-LogisticRegression\Models

2 、python生成模型和使用自己的模型:

代码如下:

# -*- coding: utf-8 -*-"""Created on Mon Apr 10 04:59:27 2017@author: Administrator"""from __future__ import print_functionimport matplotlib.pyplot as plt import numpy as np from matplotlib.colors import colorConverter, ListedColormap from cntk.learners import sgd, learning_rate_schedule, UnitType #old in learnerfrom cntk.ops.functions import load_modelfrom cntk.ops import *  #softmaxfrom cntk.io import CTFDeserializer, MinibatchSource, StreamDef, StreamDefsfrom cntk import * from cntk.layers import Dense, Sequentialfrom cntk.logging import ProgressPrinterdef generate_random_data(sample_size, feature_dim, num_classes):   # Create synthetic data using NumPy.   Y = np.random.randint(size=(sample_size, 1), low=0, high=num_classes)   # Make sure that the data is separable   X = (np.random.randn(sample_size, feature_dim) + 3) * (Y + 1)   X = X.astype(np.float32)   # converting class 0 into the vector "1 0 0",   # class 1 into vector "0 1 0", ...   class_ind = [Y == class_number for class_number in range(num_classes)]   Y = np.asarray(np.hstack(class_ind), dtype=np.float32)   return X, Y# Read a CTF formatted text (as mentioned above) using the CTF deserializer from a filedef create_reader(path, is_training, input_dim, num_label_classes):  return MinibatchSource(CTFDeserializer(path, StreamDefs(    labels = StreamDef(field='labels', shape=num_label_classes, is_sparse=False),    features  = StreamDef(field='features', shape=input_dim, is_sparse=False)  )), randomize = is_training, epoch_size = INFINITELY_REPEAT if is_training else FULL_DATA_SWEEP)   def ffnet():  inputs = 2  outputs = 2  layers = 2  hidden_dimension = 50  # input variables denoting the features and label data  features = input((inputs), np.float32)  label = input((outputs), np.float32)  # Instantiate the feedforward classification model  my_model = Sequential ([          Dense(hidden_dimension, activation=sigmoid,name='d1'),          Dense(outputs)])  z = my_model(features)  ce = cross_entropy_with_softmax(z, label)  pe = classification_error(z, label)  # Instantiate the trainer object to drive the model training  lr_per_minibatch = learning_rate_schedule(0.125, UnitType.minibatch)  # Initialize the parameters for the reader  input_dim=2  num_output_classes=2  num_samples_per_sweep = 6000  # Get minibatches of training data and perform model training  minibatch_size = 25  num_minibatches_to_train = 1024  num_sweeps_to_train_with = 2#10  num_minibatches_to_train = (num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size    # progress_printer = ProgressPrinter(0)  progress_printer = ProgressPrinter(tag='Training',num_epochs=num_sweeps_to_train_with)  trainer = Trainer(z, (ce, pe), [sgd(z.parameters, lr=lr_per_minibatch)], [progress_printer])  #trainer = Trainer(z, (ce, pe), [sgd(z.parameters, lr=lr_per_minibatch)])  train_file = "Train2-noLiner_cntk_text.txt"    # Create the reader to training data set  reader_train = create_reader(train_file, True, input_dim, num_output_classes)  # Map the data streams to the input and labels.  input_map = {    label : reader_train.streams.labels,    features : reader_train.streams.features  }   print(reader_train.streams.keys())  aggregate_loss = 0.0  #for i in range(num_minibatches_to_train):  for i in range(0, int(num_minibatches_to_train)):    #train_features, labels = generate_random_data(minibatch_size, inputs, outputs)    # Specify the mapping of input variables in the model to actual minibatch data to be trained with    #trainer.train_minibatch({features : train_features, label : labels})    # Read a mini batch from the training data file    data = reader_train.next_minibatch(minibatch_size, input_map = input_map)    trainer.train_minibatch(data)    sample_count = trainer.previous_minibatch_sample_count    aggregate_loss += trainer.previous_minibatch_loss_average * sample_count    #  last_avg_error = aggregate_loss / trainer.total_number_of_samples_seen  trainer.summarize_training_progress()  z.save_model("myfirstmod.dnn")  print(z)  print(z.parameters)  print(z.d1)  print(z.d1.signature)  print(z.d1.root_function)  print(z.d1.placeholders)  print(z.d1.parameters)  print(z.d1.op_name)  print(z.d1.type)  print(z.d1.output)  print(z.outputs)  test_features, test_labels = generate_random_data(minibatch_size, inputs, outputs)  avg_error = trainer.test_minibatch({features : test_features, label : test_labels})  print(' error rate on an unseen minibatch: {}'.format(avg_error))  return last_avg_error, avg_errornp.random.seed(98052)ffnet()print("-------------分割-----------------")inputs = 2outputs = 2minibatch_size = 5features = input((inputs), np.float32)label = input((outputs), np.float32)test_features, test_labels = generate_random_data(minibatch_size, inputs, outputs)  print('fea={}'.format(test_features))z = load_model("myfirstmod.dnn")ce = cross_entropy_with_softmax(z, label)pe = classification_error(z, label)lr_per_minibatch = learning_rate_schedule(0.125, UnitType.minibatch)progress_printer = ProgressPrinter(0)trainer = Trainer(z, (ce, pe), [sgd(z.parameters, lr=lr_per_minibatch)], [progress_printer])avg_error = trainer.test_minibatch({z.arguments[0] : test_features, label : test_labels})print(' error rate on an unseen minibatch: {}'.format(avg_error)) result1 = z.eval({z.arguments[0] : test_features}) #print("r={} ".format(result1)) out = softmax(z)result = out.eval({z.arguments[0] : test_features}) print(result)print("Label  :", [np.argmax(label) for label in test_labels])print("Predicted  :", [np.argmax(label) for label in result])#print("Predicted:", [np.argmax(result[i,:,:]) for i in range(result.shape[0])])type1_x=[]type1_y=[]type2_x=[]type2_y=[]for i in range(len(test_labels)):#for i in range(6):    if np.argmax(test_labels[i]) == 0:      type1_x.append( test_features[i][0] )      type1_y.append( test_features[i][1] )   if np.argmax(test_labels[i]) == 1:      type2_x.append( test_features[i][0] )        type2_y.append( test_features[i][1] ) type1 = plt.scatter(type1_x, type1_y,s=40, c='red',marker='+' )  type2 = plt.scatter(type2_x, type2_y, s=40, c='green',marker='+') nb_of_xs = 100xs1 = np.linspace(2, 8, num=nb_of_xs)xs2 = np.linspace(2, 8, num=nb_of_xs)xx, yy = np.meshgrid(xs1, xs2) # create the gridfeatureLine = np.vstack((np.array(xx).reshape(1,nb_of_xs*nb_of_xs),np.array(yy).reshape(1,yy.size)))print(featureLine.T)r = out.eval({z.arguments[0] : featureLine.T})print(r)# Initialize and fill the classification planeclassification_plane = np.zeros((nb_of_xs, nb_of_xs))for i in range(nb_of_xs):  for j in range(nb_of_xs):    #classification_plane[i,j] = nn_predict(xx[i,j], yy[i,j])    #r = out.eval({z.arguments[0] : [xx[i,j], yy[i,j]]})    classification_plane[i,j] = np.argmax(r[i*nb_of_xs+j] )print(classification_plane)# Create a color map to show the classification colors of each grid pointcmap = ListedColormap([    colorConverter.to_rgba('r', alpha=0.30),    colorConverter.to_rgba('b', alpha=0.30)])# Plot the classification plane with decision boundary and input samplesplt.contourf(xx, yy, classification_plane, cmap=cmap)plt.xlabel('x1')  plt.ylabel('x2')  #axes.legend((type1, type2,type3), ('0', '1','2'),loc=1)  plt.show() 

代码内容:

1先生成模型。并打印出模型里面的参数

2调用模型,测试下模型错误率

3调用模型,输出结果

4将数据可视化

输出:dict_keys([‘features', ‘labels'])

Finished Epoch[1 of 2]: [Training] loss = 0.485836 * 12000, metric = 20.36% * 12000 0.377s (31830.2 samples/s);

Composite(Dense): Input(‘Input456', [#], [2]) -> Output(‘Block577_Output_0', [#], [2])

(Parameter(‘W', [], [50 x 2]), Parameter(‘b', [], [2]), Parameter(‘W', [], [2 x 50]), Parameter(‘b', [], [50]))

Dense: Input(‘Input456', [#], [2]) -> Output(‘d1', [#], [50])

(Input(‘Input456', [#], [2]),)

Dense: Input(‘Input456', [#], [2]) -> Output(‘d1', [#], [50])

()

(Parameter(‘W', [], [2 x 50]), Parameter(‘b', [], [50]))

Dense

Tensor[50]

Output(‘d1', [#], [50])

(Output(‘Block577_Output_0', [#], [2]),)

error rate on an unseen minibatch: 0.6

――――-分割―――――C

fea=[[ 2.74521399 3.6318233 ]

[ 3.45750308 3.8683207 ]

[ 3.49858737 4.31363964]

[ 9.01324368 1.75216711]

[ 9.15447521 7.21175623]]

average since average since examples

loss last metric last

error rate on an unseen minibatch: 0.2

[[ 0.57505184 0.42494816]

[ 0.70583773 0.29416227]

[ 0.67773896 0.32226101]

[ 0.04568771 0.95431226]

[ 0.95059013 0.04940984]]

Label : [0, 0, 0, 1, 1]

Predicted : [0, 0, 0, 1, 0]

[[ 2. 2. ]

[ 2.06060606 2. ]

[ 2.12121212 2. ]

…,

[ 7.87878788 8. ]

[ 7.93939394 8. ]

[ 8. 8. ]]

Train2-noLiner_cntk_text 部分数据:

|features 1.480778 -1.265981 |labels 1 0

|features -0.592276 3.097171 |labels 0 1

|features 4.654565 1.054850 |labels 0 1

|features 6.124534 0.265861 |labels 0 1

|features 6.529863 1.347884 |labels 0 1

|features 2.330881 4.995633 |labels 0 1

|features 1.690045 0.171233 |labels 1 0

|features 2.101682 3.911253 |labels 0 1

|features 1.907487 0.201574 |labels 1 0

|features 5.141490 1.246433 |labels 0 1

|features 0.696826 0.481824 |labels 1 0

|features 3.305343 4.792150 |labels 1 0

|features 3.496849 -0.408635 |labels 1 0

|features 3.911750 0.205660 |labels 0 1

|features 5.154604 0.453434 |labels 0 1

|features 4.084166 2.718320 |labels 0 1

|features 5.544332 1.617196 |labels 0 1

|features -0.050979 0.466522 |labels 1 0

|features 5.168221 4.647089 |labels 1 0

|features 3.051973 0.864701 |labels 1 0

|features 5.989367 4.118536 |labels 1 0

|features 1.251041 -0.505563 |labels 1 0

|features 3.528092 0.319297 |labels 0 1

|features 6.907406 6.122889 |labels 1 0

|features 2.168320 0.546091 |labels 1 0

以上这篇用python生成与调用cntk模型代码演示方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


  • 上一条:
    深入学习python多线程与GIL
    下一条:
    python list转置和前后反转的例子
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客