python 标准差计算的实现(std)
Python  /  管理员 发布于 7年前   135
numpy.std() 求标准差的时候默认是除以 n 的,即是有偏的,np.std无偏样本标准差方式为加入参数 ddof = 1;
pandas.std() 默认是除以n-1 的,即是无偏的,如果想和numpy.std() 一样有偏,需要加上参数ddof=0 ,即pandas.std(ddof=0) ;DataFrame的describe()中就包含有std();
demo:
>>> aarray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])>>> np.std(a, ddof = 1)3.0276503540974917>>> np.sqrt(((a - np.mean(a)) ** 2).sum() / (a.size - 1))3.0276503540974917>>> np.sqrt(( a.var() * a.size) / (a.size - 1))3.0276503540974917
PS:numpy中标准差std的神坑
我们用Matlab作为对比。计算标准差,得到:
>> std([1,2,3])ans = 1
然而在numpy中:
>>> np.std([1,2,3])0.81649658092772603
什么鬼!这么简单的都能出错?原因在于,np.std有这么一个参数:
ddof : int, optional
Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. By default ddof is zero.
因此,想要正确调用,必须使ddof=1:
>>> np.std([1,2,3], ddof=1)1.0
而且,这一特性还影响到了许多基于numpy的包。比如scikit-learn里的StandardScaler。想要正确调用,只能自己手动设置参数:
ss = StandardScaler()ss.mean_ = np.mean(X, axis=0)ss.scale_ = np.std(X, axis=0, ddof=1)X_norm = ss.transform(X)
当X数据量较大时无所谓,当X数据量较小时则要尤为注意。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
122 在
学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..123 在
Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..原梓番博客 在
在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..博主 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..1111 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
Copyright·© 2019 侯体宗版权所有·
粤ICP备20027696号