侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

python SVM 线性分类模型的实现

Python  /  管理员 发布于 7年前   278

运行环境:win10 64位 py 3.6 pycharm 2018.1.1

导入对应的包和数据

import matplotlib.pyplot as pltimport numpy as npfrom sklearn import datasets,linear_model,cross_validation,svmdef load_data_regression():  diabetes = datasets.load_diabetes()  return cross_validation.train_test_split(diabetes,diabetes.target,test_size=0.25,random_state=0)def load_data_classfication():  iris = datasets.load_iris()  X_train = iris.data  y_train = iris.target  return cross_validation.train_test_split(X_train,y_train,test_size=0.25,random_state=0,stratify=y_train)
#线性分类SVMdef test_LinearSVC(*data):  X_train,X_test,y_train,y_test = data  cls = svm.LinearSVC()  cls.fit(X_train,y_train)  print('Coefficients:%s,intercept%s'%(cls.coef_,cls.intercept_))  print('Score:%.2f'%cls.score(X_test,y_test))X_train,X_test,y_train,y_test = load_data_classfication()test_LinearSVC(X_train,X_test,y_train,y_test)
def test_LinearSVC_loss(*data):  X_train,X_test,y_train,y_test = data  losses = ['hinge','squared_hinge']  for loss in losses:    cls = svm.LinearSVC(loss=loss)    cls.fit(X_train,y_train)    print('loss:%s'%loss)    print('Coefficients:%s,intercept%s'%(cls.coef_,cls.intercept_))    print('Score:%.2f'%cls.score(X_test,y_test))X_train,X_test,y_train,y_test = load_data_classfication()test_LinearSVC_loss(X_train,X_test,y_train,y_test)
#考察罚项形式的影响def test_LinearSVC_L12(*data):  X_train,X_test,y_train,y_test = data  L12 = ['l1','l2']  for p in L12:    cls = svm.LinearSVC(penalty=p,dual=False)    cls.fit(X_train,y_train)    print('penalty:%s'%p)    print('Coefficients:%s,intercept%s'%(cls.coef_,cls.intercept_))    print('Score:%.2f'%cls.score(X_test,y_test))X_train,X_test,y_train,y_test = load_data_classfication()test_LinearSVC_L12(X_train,X_test,y_train,y_test)
#考察罚项系数C的影响def test_LinearSVC_C(*data):  X_train,X_test,y_train,y_test = data  Cs = np.logspace(-2,1)  train_scores = []  test_scores = []  for C in Cs:    cls = svm.LinearSVC(C=C)    cls.fit(X_train,y_train)    train_scores.append(cls.score(X_train,y_train))    test_scores.append(cls.score(X_test,y_test))  fig = plt.figure()  ax = fig.add_subplot(1,1,1)  ax.plot(Cs,train_scores,label = 'Training score')  ax.plot(Cs,test_scores,label = 'Testing score')  ax.set_xlabel(r'C')  ax.set_xscale('log')  ax.set_ylabel(r'score')  ax.set_title('LinearSVC')  ax.legend(loc='best')  plt.show()X_train,X_test,y_train,y_test = load_data_classfication()test_LinearSVC_C(X_train,X_test,y_train,y_test)

#非线性分类SVM#线性核def test_SVC_linear(*data):  X_train, X_test, y_train, y_test = data  cls = svm.SVC(kernel='linear')  cls.fit(X_train,y_train)  print('Coefficients:%s,intercept%s'%(cls.coef_,cls.intercept_))  print('Score:%.2f'%cls.score(X_test,y_test))X_train,X_test,y_train,y_test = load_data_classfication()test_SVC_linear(X_train,X_test,y_train,y_test)

#考察高斯核def test_SVC_rbf(*data):  X_train, X_test, y_train, y_test = data  ###测试gamm###  gamms = range(1, 20)  train_scores = []  test_scores = []  for gamm in gamms:    cls = svm.SVC(kernel='rbf', gamma=gamm)    cls.fit(X_train, y_train)    train_scores.append(cls.score(X_train, y_train))    test_scores.append(cls.score(X_test, y_test))  fig = plt.figure()  ax = fig.add_subplot(1, 1, 1)  ax.plot(gamms, train_scores, label='Training score', marker='+')  ax.plot(gamms, test_scores, label='Testing score', marker='o')  ax.set_xlabel(r'$\gamma$')  ax.set_ylabel(r'score')  ax.set_ylim(0, 1.05)  ax.set_title('SVC_rbf')  ax.legend(loc='best')  plt.show()X_train,X_test,y_train,y_test = load_data_classfication()test_SVC_rbf(X_train,X_test,y_train,y_test)

#考察sigmoid核def test_SVC_sigmod(*data):  X_train, X_test, y_train, y_test = data  fig = plt.figure()  ###测试gamm###  gamms = np.logspace(-2, 1)  train_scores = []  test_scores = []  for gamm in gamms:    cls = svm.SVC(kernel='sigmoid',gamma=gamm,coef0=0)    cls.fit(X_train, y_train)    train_scores.append(cls.score(X_train, y_train))    test_scores.append(cls.score(X_test, y_test))  ax = fig.add_subplot(1, 2, 1)  ax.plot(gamms, train_scores, label='Training score', marker='+')  ax.plot(gamms, test_scores, label='Testing score', marker='o')  ax.set_xlabel(r'$\gamma$')  ax.set_ylabel(r'score')  ax.set_xscale('log')  ax.set_ylim(0, 1.05)  ax.set_title('SVC_sigmoid_gamm')  ax.legend(loc='best')  #测试r  rs = np.linspace(0,5)  train_scores = []  test_scores = []  for r in rs:    cls = svm.SVC(kernel='sigmoid', gamma=0.01, coef0=r)    cls.fit(X_train, y_train)    train_scores.append(cls.score(X_train, y_train))    test_scores.append(cls.score(X_test, y_test))  ax = fig.add_subplot(1, 2, 2)  ax.plot(rs, train_scores, label='Training score', marker='+')  ax.plot(rs, test_scores, label='Testing score', marker='o')  ax.set_xlabel(r'r')  ax.set_ylabel(r'score')  ax.set_ylim(0, 1.05)  ax.set_title('SVC_sigmoid_r')  ax.legend(loc='best')  plt.show()X_train,X_test,y_train,y_test = load_data_classfication()test_SVC_sigmod(X_train,X_test,y_train,y_test)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    python之拟合的实现
    下一条:
    Python实现基于SVM的分类器的方法
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 智能合约Solidity学习CryptoZombie第四课:僵尸作战系统(0个评论)
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客