侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

Python利用神经网络解决非线性回归问题实例详解

Python  /  管理员 发布于 7年前   163

本文实例讲述了Python利用神经网络解决非线性回归问题。分享给大家供大家参考,具体如下:

问题描述

现在我们通常使用神经网络进行分类,但是有时我们也会进行回归分析。
如本文的问题:
我们知道一个生物体内的原始有毒物质的量,然后对这个生物体进行治疗,向其体内注射一个物质,过一段时间后重新测量这个生物体内有毒物质量的多少。
因此,问题中有两个输入,都是标量数据,分别为有毒物质的量和注射物质的量,一个输出,也就是注射治疗物质后一段时间生物体的有毒物质的量。
数据如下图:

其中Dose of Mycotoxins 就是有毒物质,Dose of QCT就是治疗的药物。
其中蓝色底纹的数字就是输出结果。

一些说明

由于本文是进行回归分析,所以最后一层不进行激活,而直接输出。
本文程序使用sigmoid函数进行激活。
本文程序要求程序有一定的可重复性,隐含层可以指定。

另外,注意到
本文将使用数据预处理,也就是将数据减去均值再除以方差,否则使用sigmoid将会导致梯度消失。
因为数据比较大,比如200,这时输入200,当sigmoid函数的梯度就是接近于0了。
与此同时,我们在每一次激活前都进行BN处理,也就是batch normalize,中文可以翻译成规范化。
否则也会导致梯度消失的问题。与预处理情况相同。

程序

程序包括两部分,一部分是模型框架,一个是训练模型

第一部分:

# coding=utf-8import numpy as npdef basic_forard(x, w, b):  x = x.reshape(x.shape[0], -1)  out = np.dot(x, w) + b  cache = (x, w, b)  return out, cachedef basic_backward(dout, cache):  x, w, b = cache  dout = np.array(dout)  dx = np.dot(dout, w.T)  # dx = np.reshape(dx, x.shape)  # x = x.reshape(x.shape[0], -1)  dw = np.dot(x.T, dout)  db = np.reshape(np.sum(dout, axis=0), b.shape)  return dx, dw, dbdef batchnorm_forward(x, gamma, beta, bn_param):  mode = bn_param['mode']  eps = bn_param.get('eps', 1e-5)  momentum = bn_param.get('momentum', 0.9)  N, D = x.shape  running_mean = bn_param.get('running_mean', np.zeros(D, dtype=x.dtype))  running_var = bn_param.get('running_var', np.zeros(D, dtype=x.dtype))  out, cache = None, None  if mode == 'train':    sample_mean = np.mean(x, axis=0)    sample_var = np.var(x, axis=0)    x_hat = (x - sample_mean) / (np.sqrt(sample_var + eps))    out = gamma * x_hat + beta    cache = (gamma, x, sample_mean, sample_var, eps, x_hat)    running_mean = momentum * running_mean + (1 - momentum) * sample_mean    running_var = momentum * running_var + (1 - momentum) * sample_var  elif mode == 'test':    scale = gamma / (np.sqrt(running_var + eps))    out = x * scale + (beta - running_mean * scale)  else:    raise ValueError('Invalid forward batchnorm mode "%s"' % mode)  bn_param['running_mean'] = running_mean  bn_param['running_var'] = running_var  return out, cachedef batchnorm_backward(dout, cache):  gamma, x, u_b, sigma_squared_b, eps, x_hat = cache  N = x.shape[0]  dx_1 = gamma * dout  dx_2_b = np.sum((x - u_b) * dx_1, axis=0)  dx_2_a = ((sigma_squared_b + eps) ** -0.5) * dx_1  dx_3_b = (-0.5) * ((sigma_squared_b + eps) ** -1.5) * dx_2_b  dx_4_b = dx_3_b * 1  dx_5_b = np.ones_like(x) / N * dx_4_b  dx_6_b = 2 * (x - u_b) * dx_5_b  dx_7_a = dx_6_b * 1 + dx_2_a * 1  dx_7_b = dx_6_b * 1 + dx_2_a * 1  dx_8_b = -1 * np.sum(dx_7_b, axis=0)  dx_9_b = np.ones_like(x) / N * dx_8_b  dx_10 = dx_9_b + dx_7_a  dgamma = np.sum(x_hat * dout, axis=0)  dbeta = np.sum(dout, axis=0)  dx = dx_10  return dx, dgamma, dbeta# def relu_forward(x):#   out = None#   out = np.maximum(0,x)#   cache = x#   return out, cache### def relu_backward(dout, cache):#   dx, x = None, cache#   dx = (x >= 0) * dout#   return dxdef sigmoid_forward(x):  x = x.reshape(x.shape[0], -1)  out = 1 / (1 + np.exp(-1 * x))  cache = out  return out, cachedef sigmoid_backward(dout, cache):  out = cache  dx = out * (1 - out)  dx *= dout  return dxdef basic_sigmoid_forward(x, w, b):  basic_out, basic_cache = basic_forard(x, w, b)  sigmoid_out, sigmoid_cache = sigmoid_forward(basic_out)  cache = (basic_cache, sigmoid_cache)  return sigmoid_out, cache# def basic_relu_forward(x, w, b):#   basic_out, basic_cache = basic_forard(x, w, b)#   relu_out, relu_cache = relu_forward(basic_out)#   cache = (basic_cache, relu_cache)##   return relu_out, cachedef basic_sigmoid_backward(dout, cache):  basic_cache, sigmoid_cache = cache  dx_sigmoid = sigmoid_backward(dout, sigmoid_cache)  dx, dw, db = basic_backward(dx_sigmoid, basic_cache)  return dx, dw, db# def basic_relu_backward(dout, cache):#   basic_cache, relu_cache = cache#   dx_relu = relu_backward(dout, relu_cache)#   dx, dw, db = basic_backward(dx_relu, basic_cache)##   return dx, dw, dbdef mean_square_error(x, y):  x = np.ravel(x)  loss = 0.5 * np.sum(np.square(y - x)) / x.shape[0]  dx = (x - y).reshape(-1, 1)  return loss, dxclass muliti_layer_net(object):  def __init__(self, hidden_dim, input_dim=2, num_classes=2, weight_scale=0.01, dtype=np.float32, seed=None, reg=0.0, use_batchnorm=True):    self.num_layers = 1 + len(hidden_dim)    self.dtype = dtype    self.reg = reg    self.params = {}    self.weight_scale = weight_scale    self.use_batchnorm = use_batchnorm    # init all parameters    layers_dims = [input_dim] + hidden_dim + [num_classes]    for i in range(self.num_layers):      self.params['W' + str(i + 1)] = np.random.randn(layers_dims[i], layers_dims[i + 1]) * self.weight_scale      self.params['b' + str(i + 1)] = np.zeros((1, layers_dims[i + 1]))      if self.use_batchnorm and i < (self.num_layers - 1):        self.params['gamma' + str(i + 1)] = np.ones((1, layers_dims[i + 1]))        self.params['beta' + str(i + 1)] = np.zeros((1, layers_dims[i + 1]))    self.bn_params = [] # list    if self.use_batchnorm:      self.bn_params = [{'mode': 'train'} for i in range(self.num_layers - 1)]  def loss(self, X, y=None):    X = X.astype(self.dtype)    mode = 'test' if y is None else 'train'    # compute the forward data and cache    basic_sigmoid_cache = {}    layer_out = {}    layer_out[0] = X    out_basic_forward, cache_basic_forward = {}, {}    out_bn, cache_bn = {}, {}    out_sigmoid_forward, cache_sigmoid_forward = {}, {}    for lay in range(self.num_layers - 1):      # print('lay: %f' % lay)      W = self.params['W' + str(lay + 1)]      b = self.params['b' + str(lay + 1)]      if self.use_batchnorm:        gamma, beta = self.params['gamma' + str(lay + 1)], self.params['beta' + str(lay + 1)]        out_basic_forward[lay], cache_basic_forward[lay] = basic_forard(np.array(layer_out[lay]), W, b)        out_bn[lay], cache_bn[lay] = batchnorm_forward(np.array(out_basic_forward[lay]), gamma, beta, self.bn_params[lay])        layer_out[lay + 1], cache_sigmoid_forward[lay] = sigmoid_forward(np.array(out_bn[lay]))         # = out_sigmoid_forward[lay]      else:        layer_out[lay+1], basic_sigmoid_cache[lay] = basic_sigmoid_forward(layer_out[lay], W, b)    score, basic_cache = basic_forard(layer_out[self.num_layers-1], self.params['W' + str(self.num_layers)], self.params['b' + str(self.num_layers)])    # print('Congratulations: Loss is computed successfully!')    if mode == 'test':      return score    # compute the gradient    grads = {}    loss, dscore = mean_square_error(score, y)    dx, dw, db = basic_backward(dscore, basic_cache)    grads['W' + str(self.num_layers)] = dw + self.reg * self.params['W' + str(self.num_layers)]    grads['b' + str(self.num_layers)] = db    loss += 0.5 * self.reg * np.sum(self.params['W' + str(self.num_layers)] * self.params['b' + str(self.num_layers)])    dbn, dsigmoid = {}, {}    for index in range(self.num_layers - 1):      lay = self.num_layers - 1 - index - 1      loss += 0.5 * self.reg * np.sum(self.params['W' + str(lay + 1)] * self.params['b' + str(lay + 1)])      if self.use_batchnorm:        dsigmoid[lay] = sigmoid_backward(dx, cache_sigmoid_forward[lay])        dbn[lay], grads['gamma' + str(lay + 1)], grads['beta' + str(lay + 1)] = batchnorm_backward(dsigmoid[lay], cache_bn[lay])        dx, grads['W' + str(lay + 1)], grads['b' + str(lay + 1)] = basic_backward(dbn[lay], cache_basic_forward[lay])      else:        dx, dw, db = basic_sigmoid_backward(dx, basic_sigmoid_cache[lay])    for lay in range(self.num_layers):      grads['W' + str(lay + 1)] += self.reg * self.params['W' + str(lay + 1)]    return loss, gradsdef sgd_momentum(w, dw, config=None):  if config is None: config = {}  config.setdefault('learning_rate', 1e-2)  config.setdefault('momentum', 0.9)  v = config.get('velocity', np.zeros_like(w))  v = config['momentum'] * v - config['learning_rate'] * dw  next_w = w + v  config['velocity'] = v  return next_w, configclass Solver(object):  def __init__(self, model, data, **kwargs):    self.model = model    self.X_train = data['X_train']    self.y_train = data['y_train']    self.X_val = data['X_val']    self.y_val = data['y_val']    self.update_rule = kwargs.pop('update_rule', 'sgd_momentum')    self.optim_config = kwargs.pop('optim_config', {})    self.lr_decay = kwargs.pop('lr_decay', 1.0)    self.batch_size = kwargs.pop('batch_size', 100)    self.num_epochs = kwargs.pop('num_epochs', 10)    self.weight_scale = kwargs.pop('weight_scale', 0.01)    self.print_every = kwargs.pop('print_every', 10)    self.verbose = kwargs.pop('verbose', True)    if len(kwargs) > 0:      extra = ', '.join('"%s"' % k for k in kwargs.keys())      raise ValueError('Unrecognized argements %s' % extra)    self._reset()  def _reset(self):    self.epoch = 100    self.best_val_acc = 0    self.best_params = {}    self.loss_history = []    self.train_acc_history = []    self.val_acc_history = []    self.optim_configs = {}    for p in self.model.params:      d = {k: v for k, v in self.optim_config.items()}      self.optim_configs[p] = d  def _step(self):    loss, grads = self.model.loss(self.X_train, self.y_train)    self.loss_history.append(loss)    for p, w in self.model.params.items():      dw = grads[p]      config = self.optim_configs[p]      next_w, next_config = sgd_momentum(w, dw, config)      self.model.params[p] = next_w      self.optim_configs[p] = next_config    return loss  def train(self):    min_loss = 100000000    num_train = self.X_train.shape[0]    iterations_per_epoch = max(num_train / self.batch_size, 1)    num_iterations = self.num_epochs * iterations_per_epoch    for t in range(int(num_iterations)):      loss = self._step()      if self.verbose:#         print(self.loss_history[-1])        pass      if loss < min_loss:        min_loss = loss        for k, v in self.model.params.items():          self.best_params[k] = v.copy()    self.model.params = self.best_params

第二部分

import numpy as np# import datadose_QCT = np.array([0, 5, 10, 20])mean_QCT, std_QCT = np.mean(dose_QCT), np.std(dose_QCT)dose_QCT = (dose_QCT - mean_QCT ) / std_QCTdose_toxins = np.array([0, 0.78125, 1.5625, 3.125, 6.25, 12.5, 25, 50, 100, 200])mean_toxins, std_toxins = np.mean(dose_toxins), np.std(dose_toxins)dose_toxins = (dose_toxins - mean_toxins ) / std_toxinsresult = np.array([[0, 4.037, 7.148, 12.442, 18.547, 25.711, 34.773, 62.960, 73.363, 77.878],          [0, 2.552, 4.725, 8.745, 14.436, 21.066, 29.509, 55.722, 65.976, 72.426],          [0, 1.207, 2.252, 4.037, 7.148, 11.442, 17.136, 34.121, 48.016, 60.865],          [0, 0.663, 1.207, 2.157, 3.601, 5.615, 8.251, 19.558, 33.847, 45.154]])mean_result, std_result = np.mean(result), np.std(result)result = (result - mean_result ) / std_result# create the train datatrain_x, train_y = [], []for i,qct in enumerate(dose_QCT):  for j,toxin in enumerate(dose_toxins):    x = [qct, toxin]    y = result[i, j]    train_x.append(x)    train_y.append(y)train_x = np.array(train_x)train_y = np.array(train_y)print(train_x.shape)print(train_y.shape)import layers_regressionsmall_data = {'X_train': train_x,       'y_train': train_y,       'X_val': train_x,       'y_val': train_y,}batch_size = train_x.shape[0]learning_rate = 0.002reg = 0model = layers_regression.muliti_layer_net(hidden_dim=[5,5], input_dim=2, num_classes=1, reg=reg, dtype=np.float64)solver = layers_regression.Solver(model, small_data, print_every=0, num_epochs=50000, batch_size=batch_size, weight_scale=1,     update_rule='sgd_momentum', optim_config={'learning_rate': learning_rate})print('Please wait several minutes!')solver.train()# print(model.params)best_model = modelprint('Train process is finised')import matplotlib.pyplot as plt# %matplotlib inlineplt.plot(solver.loss_history, '.')plt.title('Training loss history')plt.xlabel('Iteration')plt.ylabel('Training loss')plt.show()# predict the training_datapredict = best_model.loss(train_x)predict = np.round(predict * std_result + mean_result, 1)print('Predict is ')print('{}'.format(predict.reshape(4, 10)))# print('{}'.format(predict))# observe the error between the predict after training with ground truthresult = np.array([[0, 4.037, 7.148, 12.442, 18.547, 25.711, 34.773, 62.960, 73.363, 77.878],          [0, 2.552, 4.725, 8.745, 14.436, 21.066, 29.509, 55.722, 65.976, 72.426],          [0, 1.207, 2.252, 4.037, 7.148, 11.442, 17.136, 34.121, 48.016, 60.865],          [0, 0.663, 1.207, 2.157, 3.601, 5.615, 8.251, 19.558, 33.847, 45.154]])result = result.reshape(4, 10)predict = predict.reshape(4, 10)error = np.round(result - predict, 2)print('error between predict and real data')print(error)print('The absulate error in all data is %f' % np.sum(np.abs(error)))print('The mean error in all data is %f' % np.mean(np.abs(error)))# figure the predict map in 3Dx_1 = (np.arange(0, 20, 0.1) - mean_QCT) / std_QCTx_2 = (np.arange(0, 200, 1) - mean_toxins) / std_toxinsx_test = np.zeros((len(x_1)*len(x_2), 2))index = 0for i in range(len(x_1)):  for j in range(len(x_2)):    x_test[int(index), 0] = x_1[int(i)]    x_test[int(index), 1] = x_2[int(j)]    index += 1test_pred = best_model.loss(x_test)predict = np.round(test_pred * std_result + mean_result, 3)from mpl_toolkits.mplot3d import Axes3Dx_1, x_2 = np.meshgrid(x_1 * std_QCT + mean_QCT, x_2 * std_toxins + mean_toxins)figure = plt.figure()ax = Axes3D(figure)predict = predict.reshape(len(x_1), len(x_2))ax.plot_surface(x_1, x_2, predict, rstride=1, cstride=1, cmap='rainbow')plt.show()# 最后本文将进行一些预测,但预测效果不是很好# question 2: predict with givendose_QCT_predict = np.ravel(np.array([7.5, 15]))dose_QCT_predict_ = (dose_QCT_predict - mean_QCT)/ std_QCTdose_toxins_predict = np.array([0, 0.78125, 1.5625, 3.125, 6.25, 12.5, 25, 50, 100, 200])dose_toxins_predict_ = (dose_toxins_predict - mean_toxins) / std_toxinstest = []for i,qct in enumerate(dose_QCT_predict):  for j,toxin in enumerate(dose_toxins_predict):    x = [qct, toxin]    test.append(x)test = np.array(test)print('Please look at the test data:')print(test)test = []for i,qct in enumerate(dose_QCT_predict_):  for j,toxin in enumerate(dose_toxins_predict_):    x = [qct, toxin]    test.append(x)test = np.array(test)test_pred = best_model.loss(test)predict = np.round(test_pred * std_result + mean_result, 1)print(predict.reshape(2, 10))

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。


  • 上一条:
    python 处理微信对账单数据的实例代码
    下一条:
    python障碍式期权定价公式
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 智能合约Solidity学习CryptoZombie第四课:僵尸作战系统(0个评论)
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客