侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

用Python实现BP神经网络(附代码)

Python  /  管理员 发布于 7年前   308

用Python实现出来的机器学习算法都是什么样子呢? 前两期线性回归及逻辑回归项目已发布(见文末链接),今天来讲讲BP神经网络。

BP神经网络

全部代码

https://github.com/lawlite19/MachineLearning_Python/blob/master/NeuralNetwok/NeuralNetwork.py

神经网络model

先介绍个三层的神经网络,如下图所示

输入层(input layer)有三个units(

为补上的bias,通常设为1)

表示第j层的第i个激励,也称为为单元unit

为第j层到第j+1层映射的权重矩阵,就是每条边的权重

所以可以得到:

隐含层:

输出层

,

其中,S型函数

,也成为激励函数

可以看出

为3x4的矩阵,

为1x4的矩阵

==》j+1的单元数x(j层的单元数+1)

代价函数

假设最后输出的

,即代表输出层有K个单元

,

其中,

代表第i个单元输出与逻辑回归的代价函数

差不多,就是累加上每个输出(共有K个输出)

正则化

L-->所有层的个数

-->第l层unit的个数

正则化后的代价函数为

共有L-1层,然后是累加对应每一层的theta矩阵,注意不包含加上偏置项对应的theta(0)

正则化后的代价函数实现代码:

# 代价函数def nnCostFunction(nn_params,input_layer_size,hidden_layer_size,num_labels,X,y,Lambda):length = nn_params.shape[0] # theta的中长度# 还原theta1和theta2Theta1 = nn_params[0:hidden_layer_size*(input_layer_size+1)].reshape(hidden_layer_size,input_layer_size+1)Theta2 = nn_params[hidden_layer_size*(input_layer_size+1):length].reshape(num_labels,hidden_layer_size+1)# np.savetxt("Theta1.csv",Theta1,delimiter=',')m = X.shape[0]class_y = np.zeros((m,num_labels)) # 数据的y对应0-9,需要映射为0/1的关系# 映射yfor i in range(num_labels):class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以赋值'''去掉theta1和theta2的第一列,因为正则化时从1开始'''Theta1_colCount = Theta1.shape[1]Theta1_x = Theta1[:,1:Theta1_colCount]Theta2_colCount = Theta2.shape[1]Theta2_x = Theta2[:,1:Theta2_colCount]# 正则化向theta^2term = np.dot(np.transpose(np.vstack((Theta1_x.reshape(-1,1),Theta2_x.reshape(-1,1)))),np.vstack((Theta1_x.reshape(-1,1),Theta2_x.reshape(-1,1))))'''正向传播,每次需要补上一列1的偏置bias'''a1 = np.hstack((np.ones((m,1)),X))z2 = np.dot(a1,np.transpose(Theta1))a2 = sigmoid(z2)a2 = np.hstack((np.ones((m,1)),a2))z3 = np.dot(a2,np.transpose(Theta2))h = sigmoid(z3)'''代价'''J = -(np.dot(np.transpose(class_y.reshape(-1,1)),np.log(h.reshape(-1,1)))+np.dot(np.transpose(1-class_y.reshape(-1,1)),np.log(1-h.reshape(-1,1)))-Lambda*term/2)/mreturn np.ravel(J)

反向传播BP

上面正向传播可以计算得到J(θ),使用梯度下降法还需要求它的梯度

BP反向传播的目的就是求代价函数的梯度

假设4层的神经网络,

记为-->l层第j个单元的误差

《===》

(向量化)

没有

,因为对于输入没有误差

因为S型函数

的倒数为:

,

所以上面的

和

可以在前向传播中计算出来

反向传播计算梯度的过程为:

(

是大写的

)

for i=1-m:-

-正向传播计算

(l=2,3,4...L)

-反向计算

、

...

;

-

-

最后

,即得到代价函数的梯度

实现代码:

# 梯度def nnGradient(nn_params,input_layer_size,hidden_layer_size,num_labels,X,y,Lambda):length = nn_params.shape[0]Theta1 = nn_params[0:hidden_layer_size*(input_layer_size+1)].reshape(hidden_layer_size,input_layer_size+1)Theta2 = nn_params[hidden_layer_size*(input_layer_size+1):length].reshape(num_labels,hidden_layer_size+1)m = X.shape[0]class_y = np.zeros((m,num_labels)) # 数据的y对应0-9,需要映射为0/1的关系# 映射yfor i in range(num_labels):class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以赋值'''去掉theta1和theta2的第一列,因为正则化时从1开始'''Theta1_colCount = Theta1.shape[1]Theta1_x = Theta1[:,1:Theta1_colCount]Theta2_colCount = Theta2.shape[1]Theta2_x = Theta2[:,1:Theta2_colCount]Theta1_grad = np.zeros((Theta1.shape)) #第一层到第二层的权重Theta2_grad = np.zeros((Theta2.shape)) #第二层到第三层的权重Theta1[:,0] = 0;Theta2[:,0] = 0;'''正向传播,每次需要补上一列1的偏置bias'''a1 = np.hstack((np.ones((m,1)),X))z2 = np.dot(a1,np.transpose(Theta1))a2 = sigmoid(z2)a2 = np.hstack((np.ones((m,1)),a2))z3 = np.dot(a2,np.transpose(Theta2))h = sigmoid(z3)'''反向传播,delta为误差,'''delta3 = np.zeros((m,num_labels))delta2 = np.zeros((m,hidden_layer_size))for i in range(m):delta3[i,:] = h[i,:]-class_y[i,:]Theta2_grad = Theta2_grad+np.dot(np.transpose(delta3[i,:].reshape(1,-1)),a2[i,:].reshape(1,-1))delta2[i,:] = np.dot(delta3[i,:].reshape(1,-1),Theta2_x)*sigmoidGradient(z2[i,:])Theta1_grad = Theta1_grad+np.dot(np.transpose(delta2[i,:].reshape(1,-1)),a1[i,:].reshape(1,-1))'''梯度'''grad = (np.vstack((Theta1_grad.reshape(-1,1),Theta2_grad.reshape(-1,1)))+Lambda*np.vstack((Theta1.reshape(-1,1),Theta2.reshape(-1,1))))/mreturn np.ravel(grad)

BP可以求梯度的原因

实际是利用了链式求导法则

因为下一层的单元利用上一层的单元作为输入进行计算

大体的推导过程如下,最终我们是想预测函数与已知的y非常接近,求均方差的梯度沿着此梯度方向可使代价函数最小化。可对照上面求梯度的过程。

求误差更详细的推导过程:

梯度检查

检查利用BP求的梯度是否正确

利用导数的定义验证:

求出来的数值梯度应该与BP求出的梯度非常接近

验证BP正确后就不需要再执行验证梯度的算法了

实现代码:

# 检验梯度是否计算正确# 检验梯度是否计算正确def checkGradient(Lambda = 0):'''构造一个小型的神经网络验证,因为数值法计算梯度很浪费时间,而且验证正确后之后就不再需要验证了'''input_layer_size = 3hidden_layer_size = 5num_labels = 3m = 5initial_Theta1 = debugInitializeWeights(input_layer_size,hidden_layer_size);initial_Theta2 = debugInitializeWeights(hidden_layer_size,num_labels)X = debugInitializeWeights(input_layer_size-1,m)y = 1+np.transpose(np.mod(np.arange(1,m+1), num_labels))# 初始化yy = y.reshape(-1,1)nn_params = np.vstack((initial_Theta1.reshape(-1,1),initial_Theta2.reshape(-1,1))) #展开theta'''BP求出梯度'''grad = nnGradient(nn_params, input_layer_size, hidden_layer_size,num_labels, X, y, Lambda)'''使用数值法计算梯度'''num_grad = np.zeros((nn_params.shape[0]))step = np.zeros((nn_params.shape[0]))e = 1e-4for i in range(nn_params.shape[0]):step[i] = eloss1 = nnCostFunction(nn_params-step.reshape(-1,1), input_layer_size, hidden_layer_size,num_labels, X, y,Lambda)loss2 = nnCostFunction(nn_params+step.reshape(-1,1), input_layer_size, hidden_layer_size,num_labels, X, y,Lambda)num_grad[i] = (loss2-loss1)/(2*e)step[i]=0# 显示两列比较res = np.hstack((num_grad.reshape(-1,1),grad.reshape(-1,1)))print res

权重的随机初始化

神经网络不能像逻辑回归那样初始化theta为0,因为若是每条边的权重都为0,每个神经元都是相同的输出,在反向传播中也会得到同样的梯度,最终只会预测一种结果。

所以应该初始化为接近0的数

实现代码

# 随机初始化权重thetadef randInitializeWeights(L_in,L_out):W = np.zeros((L_out,1+L_in)) # 对应theta的权重epsilon_init = (6.0/(L_out+L_in))**0.5W = np.random.rand(L_out,1+L_in)*2*epsilon_init-epsilon_init # np.random.rand(L_out,1+L_in)产生L_out*(1+L_in)大小的随机矩阵return W

预测

正向传播预测结果

实现代码

# 预测def predict(Theta1,Theta2,X):m = X.shape[0]num_labels = Theta2.shape[0]#p = np.zeros((m,1))'''正向传播,预测结果'''X = np.hstack((np.ones((m,1)),X))h1 = sigmoid(np.dot(X,np.transpose(Theta1)))h1 = np.hstack((np.ones((m,1)),h1))h2 = sigmoid(np.dot(h1,np.transpose(Theta2)))'''返回h中每一行最大值所在的列号- np.max(h, axis=1)返回h中每一行的最大值(是某个数字的最大概率)- 最后where找到的最大概率所在的列号(列号即是对应的数字)'''#np.savetxt("h2.csv",h2,delimiter=',')p = np.array(np.where(h2[0,:] == np.max(h2, axis=1)[0]))for i in np.arange(1, m):t = np.array(np.where(h2[i,:] == np.max(h2, axis=1)[i]))p = np.vstack((p,t))return p

输出结果

梯度检查:

随机显示100个手写数字

显示theta1权重

训练集预测准确度

归一化后训练集预测准确度

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    python使用Qt界面以及逻辑实现方法
    下一条:
    8种用Python实现线性回归的方法对比详解
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • PHP 8.4 Alpha 1现已发布!(0个评论)
    • Laravel 11.15版本发布 - Eloquent Builder中添加的泛型(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客