侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

Python Pandas分组聚合的实现方法

Python  /  管理员 发布于 7年前   168

Pycharm 鼠标移动到函数上,CTRL+Q可以快速查看文档,CTR+P可以看基本的参数。

apply(),applymap()和map()

apply()和applymap()是DataFrame的函数,map()是Series的函数。

apply()的操作对象是DataFrame的一行或者一列数据,applymap()是DataFrame的每一个元素。map()也是Series中的每一个元素。

apply()对dataframe的内容进行批量处理, 这样要比循环来得快。如df.apply(func,axis=0,.....) func:定义的函数,axis=0时为对列操作,=1时为对行操作。

map()和python内建的没啥区别,如df['one'].map(sqrt)。

import numpy as npfrom pandas import Series, DataFrame frame = DataFrame(np.random.randn(4, 3),         columns = list('bde'),         index = ['Utah', 'Ohio', 'Texas', 'Oregon'])print frameprint np.abs(frame)print f = lambda x: x.max() - x.min()print frame.apply(f)print frame.apply(f, axis = 1)def f(x):  return Series([x.min(), x.max()], index = ['min', 'max'])print frame.apply(f)print print 'applymap和map'_format = lambda x: '%.2f' % xprint frame.applymap(_format)print frame['e'].map(_format) 

Groupby

Groupby是Pandas中最为常用和有效的分组函数,有sum()、count()、mean()等统计函数。

groupby 方法返回的 DataFrameGroupBy 对象实际并不包含数据内容,它记录的是df['key1'] 的中间数据。当你对分组数据应用函数或其他聚合运算时,pandas 再依据 groupby 对象内记录的信息对 df 进行快速分块运算,并返回结果。

df = DataFrame({'key1': ['a', 'a', 'b', 'b', 'a'],        'key2': ['one', 'two', 'one', 'two', 'one'],        'data1': np.random.randn(5),        'data2': np.random.randn(5)})grouped = df.groupby(df['key1'])print grouped.mean() df.groupby(lambda x:'even' if x%2==0 else 'odd').mean() #通过函数分组 

聚合agg()

对于分组的某一列(行)或者多个列(行,axis=0/1),应用agg(func)可以对分组后的数据应用func函数。例如:用grouped['data1'].agg('mean')也是对分组后的'data1'列求均值。当然也可以同时作用于多个列(行)和使用多个函数上。

df = DataFrame({'key1': ['a', 'a', 'b', 'b', 'a'],        'key2': ['one', 'two', 'one', 'two', 'one'],        'data1': np.random.randn(5),        'data2': np.random.randn(5)})grouped = df.groupby('key1')print grouped.agg('mean')      data1   data2key1          a   0.749117 0.220249b  -0.567971 -0.126922 

apply()和agg()功能上差不多,apply()常用来处理不同分组的缺失数据的填充和top N的计算,会产生层级索引。

而agg可以同时传入多个函数,作用于不同的列。

df = DataFrame({'key1': ['a', 'a', 'b', 'b', 'a'],        'key2': ['one', 'two', 'one', 'two', 'one'],        'data1': np.random.randn(5),        'data2': np.random.randn(5)})grouped = df.groupby('key1')print grouped.agg(['sum','mean'])print grouped.apply(np.sum)  #apply的在这里同样适用,只是不能传入多个,这两个函数基本是可以通用的。 

         data1               data2         
           sum      mean       sum      mean
key1                                       
a     2.780273  0.926758 -1.561696 -0.520565
b    -0.308320 -0.154160 -1.382162 -0.691081


         data1     data2 key1       key2
key1                                   
a     2.780273 -1.561696  aaa  onetwoone
b    -0.308320 -1.382162   bb     onetwo

apply和agg功能上基本是相近的,但是多个函数的时候还是agg比较方便。

apply本身的自由度很高,如果分组之后不做聚合操作紧紧是一些观察的时候,apply就有用武之地了。

print grouped.apply(lambda x: x.describe())         data1   data2key1 a  count 3.000000 3.000000   mean -0.887893 -1.042878   std  0.777515 1.551220   min  -1.429440 -2.277311   25%  -1.333350 -1.913495   50%  -1.237260 -1.549679   75%  -0.617119 -0.425661   max  0.003021 0.698357b  count 2.000000 2.000000   mean -0.078983 0.106752   std  0.723929 0.064191   min  -0.590879 0.061362   25%  -0.334931 0.084057   50%  -0.078983 0.106752   75%  0.176964 0.129447   max  0.432912 0.152142 

此外apply还能改变返回数据的维度。

http://pandas.pydata.org/pandas-docs/stable/groupby.html

此外还有透视表pivot_table ,交叉表crosstab ,但是我没用过。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    Python何时应该使用Lambda函数
    下一条:
    使用Python做垃圾分类的原理及实例代码附源码
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客