侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

Python中栈、队列与优先级队列的实现方法

Python  /  管理员 发布于 7年前   227

前言

栈、队列和优先级队列都是非常基础的数据结构。Python作为一种“编码高效”的语言,对这些基础的数据结构都有比较好的实现。在业务需求开发过程中,不应该重复造轮子,今天就来看看些数据结构都有哪些实现。

0x00 栈(Stack)

栈是一种LIFO(后进先出)的数据结构,有入栈(push)、出栈(pop)两种操作,且只能操作栈顶元素。
在Python中有多种可以实现栈的数据结构。

1、list

list是Python内置的列表数据结构,它支持栈的特性,有入栈和出栈操作。只不过用list实现栈性能不是特别好。

因为list内部是通过一个动态扩容的数组来实现的。当增减元素时就有可能会触发扩容操作。如果在list的头部增减元素,也会移动整个列表。

如要使用list来实现一个栈的话,可以使用list的append()(入栈)、pop()(出栈)方法。

>>> s = []>>> s.append('one')>>> s.append('two')>>> s.append(3)>>> s['one', 'two', 3]>>> s.pop()3>>> s.pop()'two'>>> s.pop()'one'>>> s.pop()IndexError: pop from empty list

2、collections.deque

deque类是一种双端队列。在Python中它就是一个双向列表,可以以常用时间在两端执行添加和删除元素的操作,非常高效,所以它既可以实现栈也可以实现队列。

如果要在Python实现一个栈,那么应该优先选择deque,而不是list。

deque的入栈和出栈方法也分别是append()和pop()。

>>> from collections import deque>>> s = deque()>>> s.append('eat')>>> s.append('sleep')>>> s.append('code')>>> sdeque(['eat', 'sleep', 'code'])>>> s.pop()'code'>>> s.pop()'sleep'>>> s.pop()'eat'>>> s.pop()IndexError: pop from an empty deque

3、queue.LifoQueue

顾名思义,这个就是一个栈。不过它是线程安全的,如果要在并发的环境下使用,那么就可以选择使用LifoQueue。

它入栈和出栈操作是使用put()和get(),其中get()在LifoQueue为空时会阻塞。

>>> from queue import LifoQueue>>> s = LifoQueue()>>> s.put('eat')>>> s.put('sleep')>>> s.put('code')>>> s<queue.LifoQueue object at 0x109dcfe48>>>> s.get()'code'>>> s.get()'sleep'>>> s.get()'eat'>>> s.get()# 阻塞并一直等待直到栈不为空

0x01 队列(Queue)

队列是一种FIFO(先进先出)的数据结构。它有入队(enqueue)、出队(dequeue)两种操作,而且也是常数时间的操作。
在Python中可以使用哪些数据结构来实现一个队列呢?

1、list

list可以实现一个队列,但它的入队、出队操作就不是非常高效了。因为list是一个动态列表,在队列的头部执行出队操作时,会发生整个元素的移动。

使用list来实现一个队列时,用append()执行入队操作,使用pop(0)方法在队列头部执行出队操作。由于在list的第一个元素进行操作,所以后续的元素都会向前移动一位。因此用list来实现队列是不推荐的。

>>> q = []>>> q.append('1')>>> q.append('2')>>> q.append('three')>>> q.pop(0)'1'>>> q.pop(0)'2'>>> q.pop(0)'three'>>> q.pop(0)IndexError: pop from empty list

2、collections.deque

从上文我们已经知道deque是一个双向列表,它可以在列表两端以常数时间进行添加删除操作。所以用deque来实现一个队列是非常高效的。

deque入队操作使用append()方法,出队操作使用popleft()方法。

>>> from collections import deque>>> q = deque()>>> q.append('eat')>>> q.append('sleep')>>> q.append('code')>>> qdeque(['eat', 'sleep', 'code'])# 使用popleft出队>>> q.popleft()'eat'>>> q.popleft()'sleep'>>> q.popleft()'code'>>> q.popleft()IndexError: pop from an empty deque

3、queue.Queue

同样地,如果要在并发环境下使用队列,那么选择线程安全的queue.Queue。

与LifoQueue类似,入队和出队操作分别是put()和get()方法,get()在队列为空时会一直阻塞直到有元素入队。

>>> from queue import Queue>>> q = Queue()>>> q.put('eat')>>> q.put('sleep')>>> q.put('code')>>> q<queue.Queue object at 0x110564780>>>> q.get()'eat'>>> q.get()'sleep'>>> q.get()'code'# 队列为空不要执行等待>>> q.get_nowait()_queue.Empty>>> q.put('111')>>> q.get_nowait()'111'>>> q.get()# 队列为空时,会一直阻塞直到队列不为空

4、multiprocessing.Queue

多进程版本的队列。如果要在多进程环境下使用队列,那么应该选择multiprocessing.Queue。

同样地,它的入队出队操作分别是put()和get()。get()方法在队列为空,会一直阻塞直到队列不为空。

>>> from multiprocessing import Queue>>> q = Queue()>>> q.put('eat')>>> q.put('sleep')>>> q.put('code')>>> q<multiprocessing.queues.Queue object at 0x110567ef0>>>> q.get()'eat'>>> q.get()'sleep'>>> q.get()'code'>>> q.get_nowait()_queue.Empty>>> q.get()# 队列为空时,会一直阻塞直到队列不为空

0x02 优先级队列(PriorityQueue)

一个近乎排序的序列里可以使用优先级队列这种数据结构,它能高效获取最大或最小的元素。

在调度问题的场景中经常会用到优先级队列。它主要有获取最大值或最小值的操作和入队操作。

1、list

使用list可以实现一个优先级队列,但它并不高效。因为当要获取最值时需要排序,然后再获取最值。一旦有新的元素加入,再次获取最值时,又要重新排序。所以并推荐使用。

2、heapq

一般来说,优先级队列都是使用堆这种数据结构来实现。而heapq就是Python标准库中堆的实现。heapq默认情况下实现的是最小堆。

入队操作使用heappush(),出队操作使用heappop()。

>>> import heapq>>> q = []>>> heapq.heappush(q, (2, 'code'))>>> heapq.heappush(q, (1, 'eat'))>>> heapq.heappush(q, (3, 'sleep'))>>> q[(1, 'eat'), (2, 'code'), (3, 'sleep')]>>> while q:next_item = heapq.heappop(q)print(next_item)(1, 'eat')(2, 'code')(3, 'sleep')

3、queue.PriorityQueue

queue.PriorityQueue内部封装了heapq,不同的是它是线程安全的。在并发环境下应该选择使用PriorityQueue。

>>> from queue import PriorityQueue>>> q = PriorityQueue()>>> q.put((2, 'code'))>>> q.put((1, 'eat'))>>> q.put((3, 'sleep'))>>> while not q.empty():next_item = q.get()print(next_item)(1, 'eat')(2, 'code')(3, 'sleep')

0x03 总结一下

很多基础的数据结构在Python中已经实现了的,我们不应该重复造轮子,应该选择这些数据结构来实现业务需求。
collections.deque是一种双向链表,在单线程的情况下,它可以用来实现Stack和Queue。而heapq模块可以帮我们实现高效的优先级队列。

如果要在多并发的情况下使用Stack、Queue和PriorityQueue的话,那么应该选用queue模块下类:

  • 实现Stack的queue.LifoQueue
  • 实现Queue的queue.Queue或multiprocessing.Queue
  • 实现PriorityQueue的queue.PriorityQueue
  • 以上这些类都有put()和get()方法,且get()会在栈/队列为空时阻塞。

0x04 学习资料

Python Tricks: A Buffet of Awesome Python Features

――Dan Bader

好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家的支持。


  • 上一条:
    python如何获取列表中每个元素的下标位置
    下一条:
    Python中请不要再用re.compile了
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 智能合约Solidity学习CryptoZombie第四课:僵尸作战系统(0个评论)
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客