侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

Python中的十大图像处理工具(小结)

Python  /  管理员 发布于 7年前   216

Python之成为图像处理任务的最佳选择,是因为这一科学编程语言日益普及,并且其自身免费提供许多最先进的图像处理工具。本文主要介绍了一些简单易懂最常用的Python图像处理库。

当今世界充满了各种数据,而图像是其中高的重要组成部分。然而,若想其有所应用,我们需要对这些图像进行处理。图像处理是分析和操纵数字图像的过程,旨在提高其质量或从中提取一些信息,然后将其用于某些方面。

图像处理中的常见任务包括显示图像,基本操作(如裁剪、翻转、旋转等),图像分割,分类和特征提取,图像恢复和图像识别等。 Python之成为图像处理任务的最佳选择,是因为这一科学编程语言日益普及,并且其自身免费提供许多最先进的图像处理工具。

让我们看一下用于图像处理任务的一些常用Python库。

1. scikit Image

scikit-image是一个基于numpy数组的开源Python包。 它实现了用于研究、教育和工业应用的算法和实用程序。 即使是对于那些刚接触Python的人,它也是一个相当简单的库。 此库代码质量非常高并已经过同行评审,是由一个活跃的志愿者社区编写的。

使用说明文档:https://scikit-image.org/docs/stable/user_guide.html

用法举例:图像过滤、模版匹配

可使用“skimage”来导入该库。大多数功能都能在子模块中找到。

import matplotlib.pyplot as plt %matplotlib inline from skimage import data,filters image = data.coins() # ... or any other NumPy array! edges = filters.sobel(image) plt.imshow(edges, cmap='gray') 

模版匹配(使用match_template函数)

gallery上还有更多例子。

https://scikit-image.org/docs/dev/auto_examples/

2. Numpy

Numpy是Python编程的核心库之一,支持数组结构。 图像本质上是包含数据点像素的标准Numpy数组。 因此,通过使用基本的NumPy操作――例如切片、脱敏和花式索引,可以修改图像的像素值。 可以使用skimage加载图像并使用matplotlib显示。

使用说明文档:http://www.numpy.org/

用法举例:使用Numpy来对图像进行脱敏处理

import numpy as np from skimage import data import matplotlib.pyplot as plt %matplotlib inline image = data.camera() type(image) numpy.ndarray #Image is a numpy array mask = image < 87 image[mask]=255 plt.imshow(image, cmap='gray') 

3. Scipy

scipy是Python的另一个核心科学模块,就像Numpy一样,可用于基本的图像处理和处理任务。值得一提的是,子模块scipy.ndimage提供了在n维NumPy数组上运行的函数。 该软件包目前包括线性和非线性滤波、二进制形态、B样条插值和对象测量等功能。

使用说明文档:

https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html#correlation-and-convolution

用法举例:使用SciPy的高斯滤波器对图像进行模糊处理

from scipy import misc,ndimage face = misc.face() blurred_face = ndimage.gaussian_filter(face, sigma=3) very_blurred = ndimage.gaussian_filter(face, sigma=5) #Results plt.imshow(<image to be displayed>) 

4. PIL/ Pillow

PIL (Python Imaging Library)是一个免费的Python编程语言库,它增加了对打开、处理和保存许多不同图像文件格式的支持。 然而,它的发展停滞不前,其最后一次更新还是在2009年。幸运的是, PIL有一个正处于积极开发阶段的分支Pillow,它非常易于安装。Pillow能在所有主要操作系统上运行并支持Python 3。该库包含基本的图像处理功能,包括点操作、使用一组内置卷积内核进行过滤以及颜色空间转换。

使用说明文档:https://pillow.readthedocs.io/en/3.1.x/index.html

用法举例:使用ImageFilter增强Pillow中的图像

from PIL import Image, ImageFilter #Read image im = Image.open( 'image.jpg' ) #Display image im.show() from PIL import ImageEnhance enh = ImageEnhance.Contrast(im) enh.enhance(1.8).show("30% more contrast") 

5. OpenCV-Python

OpenCV( 开源计算机视觉库,Open Source Computer Vision Library)是计算机视觉应用中使用最广泛的库之一。OpenCV-Python是OpenCV的python API。 OpenCV-Python不仅速度快(因为后台由用C / C ++编写的代码组成),也易于编码和部署(由于前端的Python包装器)。 这使其成为执行计算密集型计算机视觉程序的绝佳选择。

使用说明文档:https://github.com/abidrahmank/OpenCV2-Python-Tutorials

用法举例:使用Pyramids创建一个名为'Orapple'的新水果的功能

6. SimpleCV

SimpleCV也是用于构建计算机视觉应用程序的开源框架。 通过它可以访问如OpenCV等高性能的计算机视觉库,而无需首先了解位深度、文件格式或色彩空间等。学习难度远远小于OpenCV,并且正如他们的标语所说,“ 它使计算机视觉变得简单 ”。支持SimpleCV的一些观点是:

即使是初学者也可以编写简单的机器视觉测试

摄像机、视频文件、图像和视频流都可以交互操作

使用说明文档:https://simplecv.readthedocs.io/en/latest/

用法举例

7. Mahotas

Mahotas是另一个用于Python的计算机视觉和图像处理库。 它包含传统的图像处理功能(如滤波和形态学操作)以及用于特征计算的更现代的计算机视觉功能(包括兴趣点检测和局部描述符)。 该接口使用Python,适用于快速开发,但算法是用C ++实现的,并且针对速度进行了优化。Mahotas库运行很快,它的代码很简单,(对其它库的)依赖性也很小。 建议阅读他们的官方文档以了解更多内容。

使用说明文档:

https://mahotas.readthedocs.io/en/latest/install.html

用法举例

Mahotas库使用简单的代码来完成工作。 对于“ 寻找Wally ”的问题,Mahotas完成的得很好,而且代码量非常小。

8. SimpleITK

ITK(Insight Segmentation and Registration Toolkit)是一个开源的跨平台系统,为开发人员提供了一整套用于图像分析的软件工具。 其中, SimpleITK是一个建立在ITK之上的简化层,旨在促进其在快速原型设计、教育以及脚本语言中的使用。SimpleITK是一个包含大量组件的图像分析工具包,支持一般的过滤操作、图像分割和配准。 SimpleITK本身是用C++编写的,但可用于包括Python在内的大量编程语言。

使用说明文档:https://github.com/hhatto/pgmagick

这里有大量说明了如何使用SimpleITK进行教育和研究活动的Jupyter notebook。notebook中演示了如何使用SimpleITK进行使用Python和R编程语言的交互式图像分析。

用法举例:

下面的动画是使用SimpleITK和Python创建的可视化的严格CT / MR配准过程。

9. pgmagick

pgmagick是GraphicsMagick库基于Python的包装器。GraphicsMagick 图像处理系统有时被称为图像处理的瑞士军刀。它提供了强大而高效的工具和库集合,支持超过88种主要格式图像的读取、写入和操作,包括DPX,GIF,JPEG,JPEG-2000,PNG,PDF,PNM和TIFF等重要格式。

使用说明文档:https://github.com/hhatto/pgmagick

用法举例:图片缩放、边缘提取

图片缩放

边缘提取

10. Pycairo

Pycairo是图形库cairo的一组python绑定。 Cairo是一个用于绘制矢量图形的2D图形库。 矢量图形很有趣,因为它们在调整大小或进行变换时不会降低清晰度。Pycairo库可以从Python调用cairo命令。

使用说明文档:https://github.com/pygobject/pycairo

用法:Pycairo可以绘制线条、基本形状和径向渐变

以上就是一些免费的优秀图像处理Python库。有些很知名,你可能已经知道或者用过,有些可能对你来说还是新的。那正好现在就上手操作一下,试一试吧。希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    python判断文件夹内是否存在指定后缀文件的实例
    下一条:
    在python下使用tensorflow判断是否存在文件夹的实例
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • PHP 8.4 Alpha 1现已发布!(0个评论)
    • Laravel 11.15版本发布 - Eloquent Builder中添加的泛型(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客