侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

Python常见的pandas用法demo示例

Python  /  管理员 发布于 7年前   169

本文实例总结了Python常见的pandas用法。分享给大家供大家参考,具体如下:

import numpy as npimport pandas as pd
s = pd.Series([1,3,6, np.nan, 44, 1]) #定义一个序列。 序列就是一列内容,每一行有一个index值print(s)print(s.index)

0     1.0
1     3.0
2     6.0
3     NaN
4    44.0
5     1.0
dtype: float64
RangeIndex(start=0, stop=6, step=1)

dates = pd.date_range('20180101', periods=6)print(dates)

DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
               '2018-01-05', '2018-01-06'],
              dtype='datetime64[ns]', freq='D')

df1 = pd.DataFrame(np.arange(12).reshape(3,4)) #定义DataFrame,可以看作一个有index和colunms的矩阵print(df)

   0  1   2   3
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11

df2 = pd.DataFrame(np.random.randn(6,4), index=dates, columns=['a', 'b', 'c', 'd']) #np.random.randn(6,4)生成6行4列矩阵print(df)

                   a         b         c         d
2018-01-01  0.300675  1.769383  1.244406 -1.058294
2018-01-02  0.832666  2.216755  0.178716 -0.156828
2018-01-03  1.314190 -0.866199  0.836150  1.001026
2018-01-04 -1.671724  1.147406 -0.148676 -0.272555
2018-01-05  1.146664  2.022861 -1.833995 -0.627568
2018-01-06 -0.192242  1.517676  0.756707  0.058869

df = pd.DataFrame({'A':1.0,          'B':pd.Timestamp('20180101'),          'C':pd.Series(1, index=list(range(4)), dtype='float32'),          'D':np.array([3] * 4, dtype='int32'),          'E':pd.Categorical(['test', 'train', 'test', 'train']),          'F':'foo'}) #按照给出的逐列定义dfprint(df)print(df.dtypes)

     A          B    C  D      E    F
0  1.0 2018-01-01  1.0  3   test  foo
1  1.0 2018-01-01  1.0  3  train  foo
2  1.0 2018-01-01  1.0  3   test  foo
3  1.0 2018-01-01  1.0  3  train  foo
A           float64
B    datetime64[ns]
C           float32
D             int32
E          category
F            object
dtype: object

#df的行、列、值print(df.index)print(df.columns)print(df.values)

Int64Index([0, 1, 2, 3], dtype='int64')
Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')
[[1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'test' 'foo']
 [1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'train' 'foo']
 [1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'test' 'foo']
 [1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'train' 'foo']]

print(df.describe()) #统计print(df.T) #转置

         A    C    D
count  4.0  4.0  4.0
mean   1.0  1.0  3.0
std    0.0  0.0  0.0
min    1.0  1.0  3.0
25%    1.0  1.0  3.0
50%    1.0  1.0  3.0
75%    1.0  1.0  3.0
max    1.0  1.0  3.0
                     0                    1                    2  \
A                    1                    1                    1
B  2018-01-01 00:00:00  2018-01-01 00:00:00  2018-01-01 00:00:00
C                    1                    1                    1
D                    3                    3                    3
E                 test                train                 test
F                  foo                  foo                  foo
                     3
A                    1
B  2018-01-01 00:00:00
C                    1
D                    3
E                train
F                  foo

#df排序print(df.sort_index(axis=1, ascending=False)) #根据索引值对各行进行排序(相当于重新排列各列的位置)print(df.sort_values(by='E')) #根据内容值对各列进行排序

     F      E  D    C          B    A
0  foo   test  3  1.0 2018-01-01  1.0
1  foo  train  3  1.0 2018-01-01  1.0
2  foo   test  3  1.0 2018-01-01  1.0
3  foo  train  3  1.0 2018-01-01  1.0
     A          B    C  D      E    F
0  1.0 2018-01-01  1.0  3   test  foo
2  1.0 2018-01-01  1.0  3   test  foo
1  1.0 2018-01-01  1.0  3  train  foo
3  1.0 2018-01-01  1.0  3  train  foo

indexes = pd.date_range('20180101', periods=6)df3 = pd.DataFrame(np.arange(24).reshape(6, 4), index=indexes, columns=['A', 'B', 'C', 'D'])print(df3)print()#选择columnprint(df3['A'])print()print(df3.A)

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
2018-01-01     0
2018-01-02     4
2018-01-03     8
2018-01-04    12
2018-01-05    16
2018-01-06    20
Freq: D, Name: A, dtype: int32
2018-01-01     0
2018-01-02     4
2018-01-03     8
2018-01-04    12
2018-01-05    16
2018-01-06    20
Freq: D, Name: A, dtype: int32
            A  B   C   D
2018-01-01  0  1   2   3
2018-01-02  4  5   6   7
2018-01-03  8  9  10  11

#选择行, 类似limit语句print(df3[0:0])print()print(df3[0:3])print()print(df3['20180103':'20180105'])

Empty DataFrame
Columns: [A, B, C, D]
Index: []
            A  B   C   D
2018-01-01  0  1   2   3
2018-01-02  4  5   6   7
2018-01-03  8  9  10  11
             A   B   C   D
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19

print(df3.loc['20180102']) #返回指定行构成的序列

A    4
B    5
C    6
D    7
Name: 2018-01-02 00:00:00, dtype: int32

print(df3.loc['20180103', ['A','C']]) #列筛选print()print(df3.loc['20180103':'20180105', ['A','C']]) #子df,类似select A, C from df limit ...print()print(df3.loc[:, ['A', 'B']])

A     8
C    10
Name: 2018-01-03 00:00:00, dtype: int32
             A   C
2018-01-03   8  10
2018-01-04  12  14
2018-01-05  16  18
             A   B
2018-01-01   0   1
2018-01-02   4   5
2018-01-03   8   9
2018-01-04  12  13
2018-01-05  16  17
2018-01-06  20  21

print(df3);print()print(df3.iloc[1]);print()print(df3.iloc[1,1]);print()print(df3.iloc[:,1]);print()print(df3.iloc[0:3,1:3]);print()print(df3.iloc[[1,3,5],[0,2]]) #行可以不连续,limit做不到

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
A    4
B    5
C    6
D    7
Name: 2018-01-02 00:00:00, dtype: int32
5
2018-01-01     1
2018-01-02     5
2018-01-03     9
2018-01-04    13
2018-01-05    17
2018-01-06    21
Freq: D, Name: B, dtype: int32
            B   C
2018-01-01  1   2
2018-01-02  5   6
2018-01-03  9  10
             A   C
2018-01-02   4   6
2018-01-04  12  14
2018-01-06  20  22

# print(df3.ix[:3, ['A', 'C']])\print(df3);print()print(df3[df3.A >= 8]) #根据值进行条件过滤,类似where A >= 8条件语句

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
             A   B   C   D
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23

indexes1 = pd.date_range('20180101', periods=6)df4 = pd.DataFrame(np.arange(24).reshape(6, 4), index=indexes1, columns=['A', 'B', 'C', 'D'])print(df4);print()#给某个元素赋值df4.A[1] = 1111df4.B['20180103'] = 2222df4.iloc[3, 2] = 3333df4.loc['20180105', 'D'] = 4444print(df4);print()#范围赋值df4.B[df4.A < 10] = -1print(df4);print()df4[df4.A < 10] = 0print(df4);print()

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
               A     B     C     D
2018-01-01     0     1     2     3
2018-01-02  1111     5     6     7
2018-01-03     8  2222    10    11
2018-01-04    12    13  3333    15
2018-01-05    16    17    18  4444
2018-01-06    20    21    22    23
               A   B     C     D
2018-01-01     0  -1     2     3
2018-01-02  1111   5     6     7
2018-01-03     8  -1    10    11
2018-01-04    12  13  3333    15
2018-01-05    16  17    18  4444
2018-01-06    20  21    22    23
               A   B     C     D
2018-01-01     0   0     0     0
2018-01-02  1111   5     6     7
2018-01-03     0   0     0     0
2018-01-04    12  13  3333    15
2018-01-05    16  17    18  4444
2018-01-06    20  21    22    23

indexes1 = pd.date_range('20180101', periods=6)df4 = pd.DataFrame(np.arange(24).reshape(6, 4), index=indexes1, columns=['A', 'B', 'C', 'D'])print(df4);print()#添加一列df4['E'] = np.NaNprint(df4);print()#由于index没对齐,原df没有的行默认为NaN,类型为float64,多出的行丢弃df4['F'] = pd.Series([1,2,3,4,5,6], index=pd.date_range('20180102', periods=6))print(df4);print()print(df4.dtypes)

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
             A   B   C   D   E
2018-01-01   0   1   2   3 NaN
2018-01-02   4   5   6   7 NaN
2018-01-03   8   9  10  11 NaN
2018-01-04  12  13  14  15 NaN
2018-01-05  16  17  18  19 NaN
2018-01-06  20  21  22  23 NaN
             A   B   C   D   E    F
2018-01-01   0   1   2   3 NaN  NaN
2018-01-02   4   5   6   7 NaN  1.0
2018-01-03   8   9  10  11 NaN  2.0
2018-01-04  12  13  14  15 NaN  3.0
2018-01-05  16  17  18  19 NaN  4.0
2018-01-06  20  21  22  23 NaN  5.0
A      int32
B      int32
C      int32
D      int32
E    float64
F    float64
dtype: object

df_t = pd.DataFrame(np.arange(24).reshape(6, 4), index=[1,2,3,4,5,6], columns=['A', 'B', 'C', 'D'])df_t.iloc[0, 1] = np.NaNdf_t.iloc[1, 2] = np.NaNdf = df_t.copy()print(df);print()print(df.dropna(axis=0, how='any'));print()df = df_t.copy()print(df.dropna(axis=1, how='any'));print()df = df_t.copy()df.C = np.NaNprint(df);print()print(df.dropna(axis=1, how='all'));print()

    A     B     C   D
1   0   NaN   2.0   3
2   4   5.0   NaN   7
3   8   9.0  10.0  11
4  12  13.0  14.0  15
5  16  17.0  18.0  19
6  20  21.0  22.0  23
    A     B     C   D
3   8   9.0  10.0  11
4  12  13.0  14.0  15
5  16  17.0  18.0  19
6  20  21.0  22.0  23
    A   D
1   0   3
2   4   7
3   8  11
4  12  15
5  16  19
6  20  23
    A     B   C   D
1   0   NaN NaN   3
2   4   5.0 NaN   7
3   8   9.0 NaN  11
4  12  13.0 NaN  15
5  16  17.0 NaN  19
6  20  21.0 NaN  23
    A     B   D
1   0   NaN   3
2   4   5.0   7
3   8   9.0  11
4  12  13.0  15
5  16  17.0  19
6  20  21.0  23

df = df_t.copy()print(df);print()print(df.isna());print()print(df.isnull().any());print() #isnull是isna别名,功能一样print(df.isnull().any(axis=1));print()print(np.any(df.isna() == True));print()print(df.fillna(value=0)) #将NaN赋值

    A     B     C   D
1   0   NaN   2.0   3
2   4   5.0   NaN   7
3   8   9.0  10.0  11
4  12  13.0  14.0  15
5  16  17.0  18.0  19
6  20  21.0  22.0  23
       A      B      C      D
1  False   True  False  False
2  False  False   True  False
3  False  False  False  False
4  False  False  False  False
5  False  False  False  False
6  False  False  False  False
A    False
B     True
C     True
D    False
dtype: bool
1     True
2     True
3    False
4    False
5    False
6    False
dtype: bool
True
    A     B     C   D
1   0   0.0   2.0   3
2   4   5.0   0.0   7
3   8   9.0  10.0  11
4  12  13.0  14.0  15
5  16  17.0  18.0  19
6  20  21.0  22.0  23

data = pd.read_csv('D:/pythonwp/test/student.csv')print(data)data.to_pickle('D:/pythonwp/test/student.pickle')

   id     name  age  gender
0   1       牛帅   23    Male
1   2      gyb   89    Male
2   3      xxs   27    Male
3   4      hey   24  Female
4   5    奥莱利赫本   66  Female
5   6  Jackson   61    Male
6   7       牛帅   23    Male

df0 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['A', 'B', 'C', 'D'])df1 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['A', 'B', 'C', 'D'])df2 = pd.DataFrame(np.ones((3, 4)) * 2, columns=['A', 'B', 'C', 'D'])print(df0); print()print(df1); print()print(df2); print()res = pd.concat([df0, df1, df2], axis = 0)print(res); print()res = pd.concat([df0, df1, df2], axis = 0, ignore_index=True)print(res)

     A    B    C    D
0  0.0  0.0  0.0  0.0
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
     A    B    C    D
0  1.0  1.0  1.0  1.0
1  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
     A    B    C    D
0  2.0  2.0  2.0  2.0
1  2.0  2.0  2.0  2.0
2  2.0  2.0  2.0  2.0
     A    B    C    D
0  0.0  0.0  0.0  0.0
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
0  1.0  1.0  1.0  1.0
1  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
0  2.0  2.0  2.0  2.0
1  2.0  2.0  2.0  2.0
2  2.0  2.0  2.0  2.0
     A    B    C    D
0  0.0  0.0  0.0  0.0
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
5  1.0  1.0  1.0  1.0
6  2.0  2.0  2.0  2.0
7  2.0  2.0  2.0  2.0
8  2.0  2.0  2.0  2.0

df0 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['A', 'B', 'C', 'D'])df1 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['E', 'F', 'C', 'D'])res = pd.concat([df0, df1], ignore_index=True)print(res);print()res = pd.concat([df0, df1], join='outer', ignore_index=True)print(res);print()res = pd.concat([df0, df1], join='inner',ignore_index=True)print(res);print()

     A    B    C    D    E    F
0  0.0  0.0  0.0  0.0  NaN  NaN
1  0.0  0.0  0.0  0.0  NaN  NaN
2  0.0  0.0  0.0  0.0  NaN  NaN
3  NaN  NaN  1.0  1.0  1.0  1.0
4  NaN  NaN  1.0  1.0  1.0  1.0
5  NaN  NaN  1.0  1.0  1.0  1.0
     A    B    C    D    E    F
0  0.0  0.0  0.0  0.0  NaN  NaN
1  0.0  0.0  0.0  0.0  NaN  NaN
2  0.0  0.0  0.0  0.0  NaN  NaN
3  NaN  NaN  1.0  1.0  1.0  1.0
4  NaN  NaN  1.0  1.0  1.0  1.0
5  NaN  NaN  1.0  1.0  1.0  1.0
     C    D
0  0.0  0.0
1  0.0  0.0
2  0.0  0.0
3  1.0  1.0
4  1.0  1.0
5  1.0  1.0

#横向合并df0 = pd.DataFrame(np.ones((3, 4)) * 0, index=['1', '2', '3'], columns=['A', 'B', 'C', 'D'])df1 = pd.DataFrame(np.ones((3, 4)) * 1, index=['2', '3', '4'], columns=['A', 'B', 'C', 'D'])print(df0);print()print(df1);print()res = pd.concat([df0, df1], axis=1)print(res);print()res = pd.concat([df0, df1], axis=1, join='inner', ignore_index=True)print(res);print()res = pd.concat([df0, df1], axis=1, join_axes=[df0.index])print(res);print()

     A    B    C    D
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
3  0.0  0.0  0.0  0.0
     A    B    C    D
2  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
     A    B    C    D    A    B    C    D
1  0.0  0.0  0.0  0.0  NaN  NaN  NaN  NaN
2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
4  NaN  NaN  NaN  NaN  1.0  1.0  1.0  1.0
     0    1    2    3    4    5    6    7
2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
     A    B    C    D    A    B    C    D
1  0.0  0.0  0.0  0.0  NaN  NaN  NaN  NaN
2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0

df0 = pd.DataFrame(np.ones((3, 4)) * 0, index=['1', '2', '3'], columns=['A', 'B', 'C', 'D'])df1 = pd.DataFrame(np.ones((3, 4)) * 1, index=['2', '3', '4'], columns=['A', 'B', 'C', 'D'])print(df0);print()print(df1);print()res = df0.append([df1, df1], ignore_index=False)print(res);print()s = pd.Series([1,2,3,4], index=['A','B','C','E'])print(df0.append(s, ignore_index=True))

     A    B    C    D
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
3  0.0  0.0  0.0  0.0
     A    B    C    D
2  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
     A    B    C    D
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
3  0.0  0.0  0.0  0.0
2  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
     A    B    C    D    E
0  0.0  0.0  0.0  0.0  NaN
1  0.0  0.0  0.0  0.0  NaN
2  0.0  0.0  0.0  0.0  NaN
3  1.0  2.0  3.0  NaN  4.0

df1 = pd.DataFrame({'key':['K0', 'K1', 'K2'],          'A':['A0', 'A1', 'A2'],          'B':['B0', 'B1', 'B2']})df2 = pd.

  • 上一条:
    Python中numpy模块常见用法demo实例小结
    下一条:
    详解python中list的使用
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • PHP 8.4 Alpha 1现已发布!(0个评论)
    • Laravel 11.15版本发布 - Eloquent Builder中添加的泛型(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客