浅谈Python中的全局锁(GIL)问题
Python  /  管理员 发布于 7年前   116
CPU-bound(计算密集型) 和I/O bound(I/O密集型)
计算密集型任务(CPU-bound) 的特点是要进行大量的计算,占据着主要的任务,消耗CPU资源,一直处于满负荷状态。比如复杂的加减乘除、计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力。这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数。
计算密集型任务由于主要消耗CPU资源,因此,代码运行效率至关重要。Python这样的脚本语言运行效率很低,完全不适合计算密集型任务。对于计算密集型任务,最好用C语言编写。
IO密集型任务(I/O bound)的特点是指磁盘IO、网络IO占主要的任务,CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。
IO密集型任务执行期间,99%的时间都花在IO上,花在CPU上的时间很少,因此,用运行速度极快的C语言替换用Python这样运行速度极低的脚本语言,完全无法提升运行效率。
对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。常见的大部分任务都是IO密集型任务,比如请求网页、读写文件等。当然我们在Python中可以利用sleep达到IO密集型任务的目的。
对于IO密集型任务,最合适的语言就是开发效率最高(代码量最少)的语言,脚本语言是首选,C语言最差。
全局锁问题:
解释器被一个全局解释器锁保护着,它确保任何时候都只有一个Python线程执行。
GIL最大的问题就是Python的多线程程序并不能利用多核CPU的优势 (比如一个使用了多个线程的计算密集型程序只会在一个单CPU上面运行)。
GIL只会影响到那些严重依赖CPU的程序(比如计算型的)
如果你的程序大部分只会设计到I/O,比如网络交互,那么使用多线程就很合适, 因为它们大部分时间都在等待。实际上,你完全可以放心的创建几千个Python线程, 现代操作系统运行这么多线程没有任何压力,没啥可担心的。
解决方案:
首先,如果你完全工作于Python环境中,你可以使用 multiprocessing 模块来创建一个进程池, 并像协同处理器一样的使用它。
pool = None# Performs a large calculation (CPU bound)def some_work(args): ... return resultdef some_thread(): while True: ... r = pool.apply(some_work, (args)) ...# Initiaze the poolif __name__ == '__main__': import multiprocessing pool = multiprocessing.Pool()
另外一个解决GIL的策略是使用C扩展编程技术。 主要思想是将计算密集型任务转移给C,跟Python独立,在工作的时候在C代码中释放GIL。
以上这篇浅谈Python中的全局锁(GIL)问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
122 在
学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..123 在
Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..原梓番博客 在
在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..博主 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..1111 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
Copyright·© 2019 侯体宗版权所有·
粤ICP备20027696号